Skip to main content
Log in

Detection and Quantification of Urea in Milk Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Milk adulteration with synthetic chemicals is a serious concern for human health. Urea is added in milk which causes severe stomach ailments. Potential of attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy was evaluated for rapid detection and quantification of added urea in milk. Altogether, 210 spectra (4000–700 cm−1) of milk adulterated with known urea concentration (viz., 100 ppm, 500 ppm, 700 ppm, 900 ppm, 1300 ppm, and 2000 ppm) were analyzed. The spectral range of 1670–1564 cm−1 comprising four smaller spectral regions (1670–1653, 1649–1621, 1615–1580, and 1594–1564 cm−1) showed clear differences in absorption values. Pattern recognition analysis using Soft Independent Modeling of Class Analogy (SIMCA) provided well-separated clusters, viz., pure milk and urea <900 ppm and urea >900 ppm. Quantity of urea was best predicted in the spectral range of 1649–1621 and 1611–1580 cm−1 using partial least square (PLS) regression with coefficient of determination 0.906 and 0.879 for calibration and validation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Coroian, A., Trif, A., Coroian, C. O., Mireşan, V., Raducu, C., & Daraban, S. (2012). Qualitative evaluation of buffalo cheese using FTIR spectroscopy. Animal Biology & Animal Husbandry Nationaljournal of The Biofluxbociety, 4(2), 66–70.

    CAS  Google Scholar 

  • Duric, R. A., & Harrison, R. I. (1962). Effects of urea-adduct formation and physical state on the infra-red spectra of n-paraffin hydrocarbons. Spectrochimica Acta, 18(12), 1505–1514.

    Article  Google Scholar 

  • Finete, V. L. M., Gouvêa, M. M., Marques, F. F. C., & Netto, A. D. P. (2013). Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Food Chemistry, 141, 3649–3655.

    Article  CAS  Google Scholar 

  • Fischer, P. H. H., & McDowell, C. A. (1960). The infrared absorption spectra of urea hydrocarbon adducts. Canadian Journal of Chemistry, 38, 187–193.

    Article  CAS  Google Scholar 

  • FSSAI. (2012). Manual of analysis of methods of foods, milk and milk products. Food Safety and Standards Authority of India, pp.12.

  • Galperin, V. A., & Finkelshein, A. I. (1968). The nature of the absorption bands of urea in the range 1700–1600 cm-1269. Journal of Applied Spectroscopy, 9(6), 1351–1353.

    Article  Google Scholar 

  • Hajihashemi, Z., Nasirpour, A., Scher, J., & Desobry, S. (2012). Interactions among lactose, beta-lactoglobulin and starch in co-lyophilized mixtures as determined by Fourier transform infrared spectroscopy. Journal of Food Science and Technology. doi:10.1007/s13197-012-0843-4.

    Google Scholar 

  • Hilding-ohlsson, A., Fauerbach, J. A., Sacco, N. J., Bonetto, N. C., & Cortón, E. (2012). Voltamperometric discrimination of urea and melamine adulterated skimmed milk powder. Sensors, 12(19), 12220–12234.

    Article  CAS  Google Scholar 

  • Jaiswal, P., Jha, S. N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 138, 171–175.

    Article  Google Scholar 

  • Jawaid, S., Talpur, F. N., Sherazi, S. T. H., Nizamani, S. M., & Khaskheli, A. A. (2013). Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier transform infrared spectroscopy. Food Chemistry, 141, 3066–3071.

    Article  CAS  Google Scholar 

  • Jha, S. N. (2007). Nondestructive methods for quality evaluation of dairy and food products. Beverage & Food World, 34(1), 80–83.

    Google Scholar 

  • Jha, S. N., & Gunasekaran, S. (2010). Authentication of sweetness of mango juice using Fourier transform infrared attenuated total reflection spectroscopy. Journal of Food Engineering, 101(3), 337–342.

    Article  CAS  Google Scholar 

  • Jha, S. N., & Matsuoka, T. (2004). Detection of adulterants in milk using near infrared spectroscopy. Journal of Food Science and Technology, 41(3), 313–316.

    CAS  Google Scholar 

  • Jha, S. N., Jaiswal, P., Kaur, P. P., Narsaiah, K., Singh, A. K., Kumar, R., & &Bharadwaj, R. (2013). Prediction of sensory profile of mango using textural attributes during ripening. Food and Bioprocess Technology, 6(3), 734–745.

    Article  CAS  Google Scholar 

  • Jonker, J. S., Kohn, R. A., & Eradman, R. A. (1998). Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. Journal of Dairy Science, 81, 2681–2692.

    Article  CAS  Google Scholar 

  • Loung, J. H. T., Groom, C. A., & Male, K. B. (1991). The potential role of biosensors in the food and drink industries. Biosensors & Bioelectronics, 6, 547–554.

    Article  Google Scholar 

  • Luzzana, M., & Giardino, R. (1999). Urea determination in milk by a differential pH technique. Le Lait, 79, 261–267.

    Article  CAS  Google Scholar 

  • Mishra, G. K., Mishra, R. K., & Bhand, S. (2010). Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosensors & Bioelectronics, 26, 1560–1564.

    Article  CAS  Google Scholar 

  • Nicolaou, N., & Goodacre, R. (2008). Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. Analyst, 133, 1424–1431.

    Article  CAS  Google Scholar 

  • Nicolaou, N., Xu, Y., & Goodacre, R. (2010). Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. Journal of Dairy Science, 9, 5651–5660.

  • Noyhouzer, T., Kohen, R., & Mandler, D. (2009). A new approach for measuring the redox state and redox capacity in milk. Analytical Methods, 1, 93–99.

    Article  CAS  Google Scholar 

  • Rao, C. N. R. (1963). Chemical applications of infrared spectroscopy. Academic Press, New York, Vol. 9, pp. 260.

  • Reid, L. M., O’donnell, C. P. O., & Downey, G. (2006). Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 17, 344–353.

    Article  CAS  Google Scholar 

  • Reis Lima, M. J., Fernandes Silvia, M. V., & Rangel Antonio, O. S. S. (2004). Enzymatic determination of urea in milk by sequential injection with spectrophotometric and conductometric detection. Journal of Agricultural and Food Chemistry, 52, 6887–6890.

    Article  Google Scholar 

  • Rodriguez-Saona, L., & Allendorf, M. E. (2011).Use of FTIR for rapid authentication and detection of adulteration of food. Annual Review of Food Science and Technology, 2, 467–483.

  • Santos, P. M., Pereira-Filho, E. R., & Rodriguez-Saona, L. E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometric analysis. Food Chemistry, 138, 19–24.

    Article  CAS  Google Scholar 

  • Shingel, K. I. (2002). Determination of structural peculiarities of dexran, pullulan and gamma-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate Research, 337(16), 1445–1451.

    Article  CAS  Google Scholar 

  • Trivedi, U. B, Lakshminarayana, D., Kothari, I. L., Patel, N. G., Kapse, H. N., Makhija, K. K., et al. (2009). Potentiometric biosensor for urea determination in milk. Sensors and Actuators B-Chemical, 140(1), 260–266.

  • Yang, R. J., Liu, R., & Xu, K. X. (2011). Adulteration detection of urea in milk by mid- infrared spectroscopy. Spectroscopy and Spectral Analysis, 31(9), 2383–2385.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA), Indian Council of Agricultural Research (ICAR) through its subproject entitled “Development of Spectroscopic Methods for Detection and Quantification of Adulterants and Contaminants in Fruit Juices and Milk” (Code number-PHT-3031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Narayan Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S.N., Jaiswal, P., Borah, A. et al. Detection and Quantification of Urea in Milk Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Food Bioprocess Technol 8, 926–933 (2015). https://doi.org/10.1007/s11947-014-1455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1455-y

Keywords

Navigation