Skip to main content
Log in

Effect of Low-Pressure Plasma Exposure on the Storage Characteristics of Brown Rice

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In the present study, the use of nonthermal plasma for the treatment of brown rice was pioneered with the aim to maintain the quality during storage and its potential application in the agro-food processes. Treatments were conducted on brown rice using a low-pressure plasma system at three different voltages: 1, 2, and 3 kV. Color, cooking properties (cooking time and hardness of cooked rice), fat acidity, and enzyme activity (α-amylase and lipoxygenase) were assessed immediately after the treatment and subsequently during storage for 3 months at 37 °C. During the storage of 3 months, the b value of unexposed brown rice was higher than that of brown rice with plasma exposure. In addition, the significant delays were observed in the increment of the optimum cooking time and hardness of cooked brown rice with plasma exposure compared to the control ones. The same tendencies were also observed in fat acidity, α-amylase, and lipoxygenase. This study demonstrated that low-pressure plasma preserved the major quality of brown rice, and hence is technically feasible for commercialization in the brown rice industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Afif, A. B., Jau, Y. H., & Eugene, S. (1992). Preparation of quick cooking rice. (Vol. U.S. patent 5089281 Patent).

  • Association of Official Analytical Chemists (AOAC). (1995). Official methods of analysis of the association of official analytical chemists (16th ed.). Washington, DC: AOAC.

    Google Scholar 

  • Aurand, L. W., Woods, A. E., & Wells, M. R. (1987). Enzymes. In Food composition and analysis (pp. 283–348). Westport: AVI publishing

  • Bernfeld, P. (1955). Amylases α and β. In P. Sidney, S. P. Colowick, & N. O. Kaplan (Eds.), Methods in enzymology (vol. 1) (pp. 149–158). New York: Academic.

    Google Scholar 

  • Chen, H. H., Chen, Y. K., & Chang, H. C. (2012). Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, 135(1), 74–79.

    Article  CAS  Google Scholar 

  • Chrastil, J. (1990a). Chemical and physicochemical changes of rice during storage at different temperatures. Journal of Cereal Science, 11(1), 71–85.

    Article  CAS  Google Scholar 

  • Chrastil, J. (1990b). Influence of storage on enzymes in rice grains. Journal of Agricultural and Food Chemistry, 38(5), 1198–1202. doi:10.1021/jf00095a008.

    Article  CAS  Google Scholar 

  • Chrastil, J. (1992). Correlations between the physicochemical and functional properties of rice. Journal of Agricultural and Food Chemistry, 40(9), 1683–1686. doi:10.1021/jf00021a040.

    Article  CAS  Google Scholar 

  • Chrastil, J. (1993). Enzyme activities in preharvest rice grains. Journal of Agricultural and Food Chemistry, 41(12), 2245–2248. doi:10.1021/jf00036a004.

    Article  CAS  Google Scholar 

  • Danil, D., Gregory, F., Gary, F., & Alexander, F. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020.

    Article  Google Scholar 

  • Desikachar, H. S. R., & Subrahmanyan, V. (1960). The relative effects of enzymatic and physical changes during storage on the culinary properties of rice. Cereal Chemistry, 37, 1–8.

    CAS  Google Scholar 

  • Desikachar, H. S. R., & Subrahmanyan, V. (1961). The formation of cracks in rice during wetting and its effect on the cooking characteristics of the cereal. Cereal Chemistry, 38, 356–364.

    Google Scholar 

  • Dhaliwal, Y. S., Sekhon, K. S., & Nagi, H. P. S. (1991). Enzymatic activities and rheological properties of stored rice. Cereal Chemistry, 68(1), 18–21.

    CAS  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11(1), 1–42.

    Article  Google Scholar 

  • Elaine, T. C., & Robert, J. H. S. (1992). Stabilizing brown rice to lipolytic hydrolysis by ethanol vapors. Cereal Chemistry, 69(2), 152–156.

    Google Scholar 

  • Fatemeh, M., Ramu, M. R., Witoon, P., Wayne, E. M., Marlene, W., & Mohammed, A. (2000). Lipase and lipoxygenase activity, functionality, and nutrient losses in rice bran during storage. Baton Rouge: Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center.

    Google Scholar 

  • Ghasemi, E., Mosavian, M. T. H., & Khodaparast, M. H. H. (2009). Effect of stewing in cooking step on textural and morphological properties of cooked rice. Rice Science, 16(3), 243–246. doi:10.1016/s1672–6308(08)60086-4.

    Article  Google Scholar 

  • Lii, C.-y., Liao, C.-d., Stobinski, L., & Tomasik, P. (2002). Behaviour of granular starches in low-pressure glow plasma. Carbohydrate Polymers, 49(4), 499–507.

    Article  CAS  Google Scholar 

  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3(3–4), 159–170. doi:10.1007/s12393-011-9041-9.

    Article  Google Scholar 

  • Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnology Advances, 26(6), 610–617.

    Article  CAS  Google Scholar 

  • Niemira, B. A. (2012). Cold plasma decontamination of foods*. Annual Review of Food Science and Technology, 3(1), 125–142. doi:10.1146/annurev-food-022811-101132.

    Article  CAS  Google Scholar 

  • Ohtsubo, K. (1995). Chemical components and analysis thereof. In S. Chikubu (Ed.), Rice post-harvest technology (pp. 450–469). Tokyo: The AEC Corporation.

    Google Scholar 

  • Pankaj, S. K., Misra, N. N., & Cullen, P. J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies, 19, 153–157.

    Article  CAS  Google Scholar 

  • Parnsakhorn, S., & Langkapin, J. (2013). Changes in physicochemical characteristics of germinated brown rice and brown rice during storage at various temperatures. Agricultural Engineering International: CIGR Journal, 15(2), 293–303.

    Google Scholar 

  • Piggott, J. R., Morrison, W. R., & Clyne, J. (1991). Changes in lipids and in sensory attributes on storage of rice milled to different degrees. International Journal of Food Science & Technology, 26(6), 615–628. doi:10.1111/j.1365-2621.1991.tb02007.x.

    Article  CAS  Google Scholar 

  • Pushpamma, P., & Reddy, M. U. (1979). Physico-chemical changes in rice and jowar stored in different agroclimatic regions of Andhra Pradesh. Bulletin Grain Technology, 1979(17), 97–108.

    Google Scholar 

  • Sirisoontaralak, P., & Noomhorm, A. (2007). Changes in physicochemical and sensory-properties of irradiated rice during storage. Journal of Stored Products Research, 43(3), 282–289.

    Article  CAS  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics. New York: McGraw Hill Book Co., Inc.

    Google Scholar 

  • Surowsky, B., Fischer, A., Schlueter, O., & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science & Emerging Technologies, 19, 146–152.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Ise, K., Li, C., Honda, I., Iwai, Y., & Matsukura, U. (1999). Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. Journal of Agricultural and Food Chemistry, 47(3), 1119–1124. doi:10.1021/jf980967a.

    Article  CAS  Google Scholar 

  • Takai, E., Kitano, K., Kuwabara, J., & Shiraki, K. (2012). Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Processes and Polymers, 9(1), 77–82. doi:10.1002/ppap.201100063.

    Article  CAS  Google Scholar 

  • Villamiel, M., Del Castillo, D., & Corzo, N. (2006). Browning reactions. In Y. H. Hui, W. K. Nip, M. L. Nollet, G. Paliyath, & B. K. Simpson (Eds.), Food biochemistry and food processing (pp. 77–100). Oxford: Blankwell Publishing Ltd.

    Google Scholar 

  • Wang, Y.-J., Wang, L., Shephard, D., Wang, F., & Patindol, J. (2002). Properties and structures of flours and starches from whole, broken, and yellowed rice kernels in a model study. Cereal Chemistry Journal, 79(3), 383–386. doi:10.1094/CCHEM.2002.79.3.383.

    Article  CAS  Google Scholar 

  • Zhou, Z., Robards, K., Helliwell, S., & Blanchard, C. (2002). Ageing of stored rice: changes in chemical and physical attributes. Journal of Cereal Science, 35(1), 65–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council of Taiwan [NSC 101-2221-E-346-007-]. The authors thank Union Rice Co., Ltd. for providing rice samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Han Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H.H., Hung, C.L., Lin, S.Y. et al. Effect of Low-Pressure Plasma Exposure on the Storage Characteristics of Brown Rice. Food Bioprocess Technol 8, 471–477 (2015). https://doi.org/10.1007/s11947-014-1415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1415-6

Keywords

Navigation