Skip to main content
Log in

Development of a Quantitative Visualization Technique for Gluten in Dough Using Fluorescence Fingerprint Imaging

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The distribution of constituents in food affects its end qualities such as texture, and there is a growing demand to develop a method for studying this distribution easily, accurately, and nondestructively. The objective of this study was to develop an imaging method that visualizes the precise quantity of constituents, using the fluorescence fingerprint (FF). The FF is a set of fluorescence spectra acquired at consecutive excitation wavelengths, and its pattern contains abundant information on the constituents of the sample measured. In this study, the target for visualization was the distribution of gluten in dough samples. Dough samples were prepared with different ratios of gluten, starch, and water, and fluorescence images at multiple combinations of excitation and emission wavelengths were acquired. The fluorescence intensities of a pixel at these different wavelengths constructed its FF, reflecting the constituents of the corresponding point in the sample. A partial least squares regression (PLSR) model was built using the average FFs of the samples and the corresponding gluten ratios as the explanatory and objective variables, respectively. The importance of each wavelength in the PLSR model was assessed using the selectivity ratio, and optimum wavelengths for the accurate prediction of gluten ratio were selected. Finally, the gluten ratio of each pixel was predicted with the PLSR model using the selected wavelengths, and each pixel was colored according to the predicted gluten ratio. The imaging method developed enables the distribution of constituents to be visualized with colors corresponding to their actual quantities or ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahram, M., Bro, R., Stedmon, C., & Afkhami, A. (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3–4), 99–105.

    Article  CAS  Google Scholar 

  • Baker, J. C., Parker, H. K., & Mize, M. D. (1946). The distribution of water in dough. Cereal Chemistry, 23(1), 30–38.

    CAS  Google Scholar 

  • Bloksma, A. H. (1990). Dough structure, dough rheology, and baking quality. Cereal Foods World, 35(2), 237–244.

    Google Scholar 

  • Christensen, J., Norgaard, L., Bro, R., & Engelsen, S. B. (2006). Multivariate autofluorescence of intact food systems. Chemical Reviews, 106(6), 1979–1994.

    Article  CAS  Google Scholar 

  • Defernez, M., & Kemsley, E. K. (1997). The use and misuse of chemometrics for treating classification problems. TrAC Trends in Analytical Chemistry, 16(4), 216–221.

    Article  Google Scholar 

  • ElMasry, G., & Wold, J. P. (2008). High-speed assessment of fat and water content distribution in fish fillets using online imaging spectroscopy. Journal of Agricultural and Food Chemistry, 56(17), 7672–7677.

    Article  CAS  Google Scholar 

  • Fernandez-Ahumada, E., Garrido-Varo, A., Guerrero, J. E., Perez-Marin, D., & Fearn, T. (2008). Taking NIR calibrations of feed compounds from the laboratory to the process: calibration transfer between predispersive and postdispersive instruments. Journal of Agricultural and Food Chemistry, 56(21), 10135–10141.

    Article  CAS  Google Scholar 

  • Fujita, K., Tsuta, M., Kokawa, M., & Sugiyama, J. (2010). Detection of deoxynivalenol using fluorescence excitation–emission matrix. Food and Bioprocess Technology, 3(6), 922–927.

    Article  CAS  Google Scholar 

  • Gowen, A. A., O'Donnell, C. P., Cullen, P. J., Downey, G., & Frias, J. M. (2007). Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology, 18(12), 590–598.

    Article  CAS  Google Scholar 

  • Guimet, F., Ferre, J., Boque, R., & Rius, F. X. (2004). Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation–emission matrix fluorescence spectroscopy. Analytica Chimica Acta, 515(1), 75–85.

    Article  CAS  Google Scholar 

  • Jiang, J. K., Wu, J., & Liu, X. H. (2010). Fluorescence properties of Lake Water. Spectroscopy and Spectral Analysis, 30(6), 1525–1529.

    CAS  Google Scholar 

  • Kalab, M., Allanwojtas, P., & Miller, S. S. (1995). Microscopy and other imaging techniques in food structure analysis. Trends in Food Science & Technology, 6(6), 177–186.

    Article  CAS  Google Scholar 

  • Kokawa, M., Fujita, K., Sugiyama, J., Tsuta, M., Shibata, M., Araki, T., et al. (2011). Visualization of gluten and starch distributions in dough by fluorescence fingerprint imaging. Bioscience Biotechnology and Biochemistry, 75(11), 2112–2118.

    Article  CAS  Google Scholar 

  • Kokawa, M., Fujita, K., Sugiyama, J., Tsuta, M., Shibata, M., Araki, T., et al. (2012). Quantification of the distributions of gluten, starch and air bubbles in dough at different mixing stages by fluorescence fingerprint imaging. Journal of Cereal Science, 55(1), 15–21.

    Article  CAS  Google Scholar 

  • Kvalheim, O. M. (2010). Interpretation of partial least squares regression models by means of target projection and selectivity ratio plots. Journal of Chemometrics, 24(7–8), 496–504.

    Article  CAS  Google Scholar 

  • Louwerse, D. J., & Smilde, A. K. (2000). Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 55(7), 1225–1235.

    Article  CAS  Google Scholar 

  • Moller, J. K. S., Parolari, G., Gabba, L., Christensen, J., & Skibsted, L. H. (2003). Monitoring chemical changes of dry-cured parma ham during processing by surface autofluorescence spectroscopy. Journal of Agricultural and Food Chemistry, 51(5), 1224–1230.

    Article  CAS  Google Scholar 

  • Nasibov, H., Kholmatov, A., Akselli, B., Nasibov, A., & Baytaroglu, S. (2010). Performance analysis of the ccd pixel binning option in particle-image velocimetry measurements. Ieee-Asme Transactions on Mechatronics, 15(4), 527–540.

    Article  Google Scholar 

  • Nobel, P. S. (2009). Physicochemical and environmental plant physiology (4th ed.). San Diego: Academic Press, Oxford, UK.

  • Peighambardoust, S. H., van der Goot, A. J., van Vliet, T., Hamer, R. J., & Boom, R. M. (2006). Microstructure formation and rheological behaviour of dough under simple shear flow. Journal of Cereal Science, 43(2), 183–197.

    Article  CAS  Google Scholar 

  • Peighambardoust, S. H., Dadpour, M. R., & Dokouhaki, M. (2010). Application of epifluorescence light microscopy (EFLM) to study the microstructure of wheat dough: a comparison with confocal scanning laser microscopy (CSLM) technique. Journal of Cereal Science, 51(1), 21–27.

    Article  Google Scholar 

  • Peressini, D., Peighambardoust, S. H., Hamer, R. J., Sensidoni, A., & van der Goot, A. J. (2008). Effect of shear rate on microstructure and rheological properties of sheared wheat doughs. Journal of Cereal Science, 48(2), 426–438.

    Article  CAS  Google Scholar 

  • Rajalahti, T., Arneberg, R., Kroksveen, A. C., Berle, M., Myhr, K. M., & Kvalheim, O. M. (2009). Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Analytical Chemistry, 81(7), 2581–2590.

    Article  CAS  Google Scholar 

  • Sadecka, J., & Tothova, J. (2007). Fluorescence spectroscopy and chemometrics in the food classification—a review. Czech Journal of Food Sciences, 25(4), 159–173.

    CAS  Google Scholar 

  • Seasholtz, M. B., & Kowalski, B. R. (1992). The effect of mean centering on prediction in multivariate calibration. Journal of Chemometrics, 6(2), 103–111.

    Article  CAS  Google Scholar 

  • Sikorska, E., Glisuzynska-Swiglo, A., Insinska-Rak, M., Khmelinskii, I., De Keukeleire, D., & Sikorski, M. (2008). Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Analytica Chimica Acta, 613(2), 207–217.

    Article  CAS  Google Scholar 

  • Stevenson, S. G., & Preston, K. R. (1994). Intrinsic fluorescence and quenching studies of gluten proteins. Cereal Chemistry, 71(2), 155–159.

    CAS  Google Scholar 

  • Tsuta, M., Sugiyama, J., & Sagara, Y. (2001). Near-infrared imaging spectroscopy based on sugar absorption band for melons. Journal of Agricultural and Food Chemistry, 50(1), 48–52.

    Article  Google Scholar 

  • Tsuta, M., Miyashita, K., Suzuki, T., Nakauchi, S., Sagara, Y., & Sugiyama, J. (2007). Three-dimensional visualization of internal structural changes in soybean seeds during germination by excitation-emission matrix imaging. Transactions of the ASABE, 50(6), 2127–2136.

    Google Scholar 

  • Wold, S., Sjostrom, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130.

    Article  CAS  Google Scholar 

  • Wold, S., Hoy, M., Martens, H., Trygg, J., Westad, F., MacGregor, J., et al. (2009). The PLS model space revisited. Journal of Chemometrics, 23(1–2), 67–68.

    Article  Google Scholar 

  • Yin, C. L., Li, H., Ding, C. H., & Wang, H. (2009). Preliminary investigation on variety, brewery and vintage of wines using three-dimensional fluorescence spectroscopy. Food Science and Technology Research, 15(1), 27–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokawa, M., Sugiyama, J., Tsuta, M. et al. Development of a Quantitative Visualization Technique for Gluten in Dough Using Fluorescence Fingerprint Imaging. Food Bioprocess Technol 6, 3113–3123 (2013). https://doi.org/10.1007/s11947-012-0982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0982-7

Keywords

Navigation