Skip to main content

Advertisement

Log in

Design of Packaging Vents for Cooling Fresh Horticultural Produce

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This review focuses on the design of vents in packages used for handling horticulture produce. The studies on vent designs that are conducted to obtain fundamental understanding of the mechanisms by which different parameters affect the rate and homogeneity of the airflow and the cooling process are presented. Ventilated packages should be designed in such a way that they can provide a uniform airflow distribution and consequently uniform produce cooling. Total opening area and opening size and position show a significant effect on pressure drop, air distribution uniformity and cooling efficiency. Recent advances in measurement and mathematical modelling techniques have provided powerful tools to develop detailed investigations of local airflow rate and heat and mass transfer processes within complex packaging structures. The complexity of the physical structure of the packed systems and the biological variability of the produce make both experimental and model-based studies of transport processes challenging. In many of the available mathematical models, the packed structure is assumed as a porous medium; the limitations of the porous media approach are evident during vented package design studies principally when the container-to-produce dimension ratio is below a certain value. The complex and chaotic structure within horticultural produce ventilated packages during a forced-air precooling process complicates the numerical study of energy and mass transfer considering each individual produce. Future research efforts should be directed to detailed models of the vented package, the complex produce stacking within the package, as well as their interaction with adjacent produce, stacks and surrounding environment. For the validation of the numerical models, the development of better experimental techniques taking into account the complex packaging system is also very important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams, C., Jr., & Fish, J., Jr. (1982). Air flow resistance characteristics of bulk piled sweet potatoes. Transactions of ASAE, 25(4), 1103–1106.

    Google Scholar 

  • Allais, I., & Alvarez, G. (2001). Analysis of heat transfer during mist chilling of a packed bed of spheres simulating foodstuffs. Journal of Food Engineering, 49(1), 37–47.

    Article  Google Scholar 

  • Alvarez, G., & Flick, D. (1999a). Analysis of heterogeneous cooling of agricultural products inside bins part I: aerodynamic study. Journal of Food Engineering, 39(3), 227–237.

    Article  Google Scholar 

  • Alvarez, G., & Flick, D. (1999b). Analysis of heterogeneous cooling of agricultural products inside bins: part II: thermal study. Journal of Food Engineering, 39(3), 239–245.

    Article  Google Scholar 

  • Alvarez, G., Bournet, P. E., & Flick, D. (2003). Two-dimensional simulation of turbulent flow and transfer through stacked spheres. International Journal of Heat and Mass Transfer, 46(13), 2459–2469.

    Article  Google Scholar 

  • Anderson, B., Sarkar, A., Thompson, J., & Singh, R. (2004). Commercial-scale forced-air cooling of packaged strawberries. Transactions of ASAE, 47, 183–190.

    Google Scholar 

  • Arifin, B., & Chau, K. (1987). Forced-air cooling of strawberries. American Society of Agricultural Engineers (USA).

  • Arifin, B., & Chau, K. (1988). Cooling of strawberries in cartons with new vent hole designs. ASHRAE Transactions, 94(1), 1415–1426.

    Google Scholar 

  • ASHRAE. (2002). Methods of precooling fruits, vegetables, and cut flowers (pp. 14.1–14.10). Atlanta: ASHRAE.

    Google Scholar 

  • Aswaney M. (2007). Forced-air precooling of fruits and vegetables. Air Conditioning and Refrigeration Journal, 57–62

  • Baird, C., Gaffney, J., & Talbot, M. (1988). Design criteria for efficient and cost effective forced-air cooling systems for fruits and vegetables. ASHRAE Transactions, 94(1), 1434–1454.

    Google Scholar 

  • Becker, B. R., Misra, A., & Fricke, B. A. (1996). Bulk refrigeration of fruits and vegetables. Part I: theoretical considerations of heat and mass transfer. H V A C & R Research, 2(2), 122–134.

    Google Scholar 

  • Brosnan, T., & Sun, D. (2001). Precooling techniques and applications for horticultural products - a review. International Journal of Refrigeration, 24(2), 154–170.

    Article  Google Scholar 

  • Caleb, O. J., Opara, U. L., & Witthuhn, C. R. (2011). Modified atmosphere packaging of pomegranate fruit and arils: a review. Food and Bioprocess Technology. doi:10.1007/s11947-011-0525-7.

  • Chau, K., Gaffney, J., Baird, C., & Church, G. (1985). Resistance to air flow of oranges in bulk and in cartons. Transactions of ASAE, 28(6), 2083–2088.

    Google Scholar 

  • Cortbaoui, P., Goyette, B., Gariépy, Y., Charles, M. T., Raghavan, G. S. V., & Vigneault, C. (2006). Forced air cooling system for Zea mays. International Journal of Food, Agriculture and Environment, 4(1), 101–104.

    Google Scholar 

  • de Castro, L. R., & Vigneault, C. (2005). Effect of container openings and airflow rate on energy required for forced-air cooling of horticultural produce. Canadian Biosystems Engineering, 47(3), 1–9.

    Google Scholar 

  • de Castro, L. R., Vigneault, C., & Cortez, L. A. B. (2004a). Effect of container opening area on air distribution during precooling of horticultural produce. Transactions of ASAE, 47(6), 2033–2038.

    Google Scholar 

  • de Castro, L. R., Vigneault, C., & Cortez, L. A. B. (2004b). Container opening design for horticultural produce cooling efficiency. Journal of Food, Agriculture and Environment, 2(1), 135–140.

    Google Scholar 

  • de Castro, L. R., Vigneault, C., & Cortez, L. A. B. (2005a). Cooling performance of horticultural produce in containers with peripheral openings. Postharvest Biology and Technology, 38(3), 254–261.

    Article  Google Scholar 

  • de Castro, L. R., Vigneault, C., & Cortez, L. A. B. (2005b). Effect of container openings and airflow on energy required for forced air cooling of horticultural produce. Canadian Biosystems Engineering, 47, 3.1–3.9.

    Google Scholar 

  • de Castro, L. R., Vigneault, C., Charles, M. T., & Cortez, L. A. B. (2005c). Effect of cooling delay and cold-chain breakage on Santa Clara tomato. International Journal of Food, Agriculture and Environment, 3(1), 49–54.

    Google Scholar 

  • de Castro, L. R., Cortez, L. A. B., & Vigneault, C. (2006). Effect of sorting, refrigeration and packaging on tomato shelf life. International Journal of Food, Agriculture and Environment, 4(1), 70–74.

    Google Scholar 

  • Dehghannya, J., Ngadi, M., & Vigneault, C. (2008). Simultaneous aerodynamic and thermal analysis during cooling of stacked spheres inside ventilated packages. Chemical Engineering and Technology, 31(11), 1651–1659.

    Article  CAS  Google Scholar 

  • Dehghannya, J., Ngadi, M., & Vigneault, C. (2011). Mathematical modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas. Food Control, 22(8), 1393–1399.

    Article  Google Scholar 

  • Dehghannya, J., Ngadi, M., & Vigneault, C. (2012). Transport phenomena modelling during produce cooling for optimal package design: thermal sensitivity analysis. Biosystems Engineering. doi:10.1016/j.biosystemseng.2012.01.001.

  • Delele, M., Tijskens, E., Atalay, Y., Ho, Q., Ramon, H., Nicolaī, B., & Verboven, P. (2008). Combined discrete element and CFD modelling of airflow through random stacking of horticultural products in vented boxes. Journal of Food Engineering, 89(1), 33–41.

    Article  Google Scholar 

  • Delele, M., Verboven, P., Ho, Q., & Nicolai, B. (2010). Advances in mathematical modelling of postharvest refrigeration processes. Stewart Postharvest Review, 6(2), 1–8.

    Article  Google Scholar 

  • Delele, M., Vorstermans, B., Creemers, P., Tsige, A. A., Tijskens, E., Schenk, A., Opara, U. L., Nicolaī, B., & Verboven, P. (2012). CFD model development and validation of a thermonebulisation fungicide fogging system for postharvest storage of fruit. Journal of Food Engineering, 108(1), 59–68.

    Article  Google Scholar 

  • Edeogu, I., Feddes, J., & Leonard, J. (1997). Comparison between vertical and horizontal air flow for fruit and vegetable precooling. Canadian Agricultural Engineering, 39(2), 107–112.

    Google Scholar 

  • Émond, J. P., Mercier, F., Sadfa, S., Bourré, M., & Gakwaya, A. (1996). Study of parameters affecting cooling rate and temperature distribution in forced-air precooling of strawberry. Transactions of ASAE, 39(6), 2185–2191.

    Google Scholar 

  • Faubion, D. F., & Kader, A. A. (1997). Influence of place packing or tray packing on the cooling rate of palletized Anjou pears. HortTechnology, 7(4), 378–382.

    Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2007). Modelling airflow through vented packages containing horticultural products. In D. W. Sun (Ed.), Computational fluid dynamics in food processing. Florida: CRC.

    Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2008). A nonintrusive flow measurement technique to validate the simulated laminar fluid flow in a packed container with vented walls. International Journal of Refrigeration, 31(2), 242–255.

    Article  CAS  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2009a). Modeling the forced-air cooling process of fresh strawberry packages, part I: numerical model. International Journal of Refrigeration, 32(2), 335–348.

    Article  CAS  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2009b). Modeling the forced-air cooling process of fresh strawberry packages, part II: experimental validation of the flow model. International Journal of Refrigeration, 32(2), 349–358.

    Article  CAS  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2009c). Modeling the forced-air cooling process of fresh strawberry packages, part III: experimental validation of the energy model. International Journal of Refrigeration, 32(2), 359–368.

    Article  CAS  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2011). Improved airflow method and packaging system for forced-air cooling of strawberries. International Journal of Refrigeration, 34(4), 1162–1173.

    Article  Google Scholar 

  • Fikiin, A. G., Fikiin, K. A., & Triphonov, S. D. (1999). Equivalent thermophysical properties and surface heat transfer coefficient of fruit layers in trays during cooling. Journal of Food Engineering, 40(1–2), 7–13.

    Article  Google Scholar 

  • Fraser, H. W. (1991). Forced-air rapid cooling of fresh Ontario fruits and vegetables (factsheet order no. 91−070, October edn.). Ottawa, Ontario, Canada: Ontario Ministry of Agriculture and Food and Rural Affairs.

    Google Scholar 

  • Fraser, H. W. (1998). Tunnel forced-air coolers for fresh fruits and vegetables. Ottawa, Ontario, Canada: Ontario Ministry of Agriculture, Food and Rural Affairs.

    Google Scholar 

  • Freund, H., Zeiser, T., Huber, F., Klemm, E., Brenner, G., Durst, F., & Emig, G. (2003). Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chemical Engineering Science, 58(3–6), 903–910.

    Article  CAS  Google Scholar 

  • Gaffney, J., & Baird, C. (1977). Forced air cooling of bell peppers in bulk. Transactions of ASAE, 20(6), 1174–1179.

    Google Scholar 

  • Gaffney, J., Baird, C., & Chau, K. (1985). Influence of airflow rate, respiration, evaporative cooling, and other factors affecting weight loss calculations for fruits and vegetables. ASHRAE Transactions, 91(1), 690–707.

    Google Scholar 

  • Goyette, B., Vigneault, C., Panneton, B., & Raghavan, G. S. V. (1996). Method to evaluate the average temperature at the surface of horticultural crop. Canadian Agricultural Engineering, 38(4), 291–295.

    Google Scholar 

  • Guardo, A., Coussirat, M., Larrayoz, M., Recasens, F., & Egusquiza, E. (2005). Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chemical Engineering Science, 60(6), 1733–1742.

    Article  CAS  Google Scholar 

  • Haas, E., & Felsenstein, G. (1987). Factors affecting resistance to air flow through avocados packed in fiberboard crates. In Proc. 17th international congress of refrigeration. International Institute of Refrigeration, pp 125–130, Paris, France.

  • Han, J., & Park, J. M. (2007). Finite element analysis of vent/hand hole designs for corrugated fibreboard boxes. Packaging Technology and Science, 20(1), 39–47.

    Article  Google Scholar 

  • Hass, E., Felsenstein, G., Shitzer, A., & Manor, G. (1976). Factors affecting resistance to air flow through packed fresh fruit. ASHRAE Transactions, 82(2), 548–554.

    Google Scholar 

  • Hoang, M. L., Verboven, P., Baelmans, M., & Nicolaï, B. (2003). A continuum model for airflow, heat and mass transfer in bulk of chicory roots. Transactions of ASAE, 46(6), 1603–1611.

    Google Scholar 

  • Hui, K. P. C., Vigneault, C., de Castro, L. R., & Raghavan, G. S. V. (2008a). Effect of different accessories on airflow pattern inside refrigerated semi-trailers transporting fresh produce. Applied Engineering in Agriculture, 24(3), 337–343.

    Google Scholar 

  • Hui, K. P. C., Vigneault, C., Sotocinal, S. A., de Castro, L. R., & Raghavan, G. S. V. (2008b). Effects of loading and air bag bracing patterns on correlated relative air distribution inside refrigerated semi-trailers transporting fresh horticultural produce. Canadian Biosystems Engineering, 50(3), 27–35.

    Google Scholar 

  • Kader, A. A. (2002). Postharvest technology of horticultural crops. Davis, California: University of California, Department of Agriculture and Natural Resources, Cooperative Extension.

    Google Scholar 

  • Ladaniya, M. S. (2008). Citrus fruit: biology, technology and evaluation. USA: Academic Press.

    Google Scholar 

  • Ladaniya, M., & Singh, S. (2000). Influence of ventilation and stacking pattern of corrugated fibre board containers on forced-air pre-cooling of ‘Nagpur’ mandarins. Journal of Food Science and Technology-Mysore, 37(3), 233–237.

    Google Scholar 

  • Ladaniya, M., & Singh, S. (2002). Packaging of horticultural produce with special reference to citrus fruits. Packaging India, 34(5), 9–22.

    Google Scholar 

  • Leyte, J. C., & Forney, C. F. (1999). Optimizing flat design for forced-air cooling of blueberries packaged in plastic clamshells. Hort Technology, 9(2), 202–205.

    Google Scholar 

  • Logtenberg, S., Nijemeisland, M., & Dixon, A. (1999). Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor. Chemical Engineering Science, 54(13–14), 2433–2439.

    Article  CAS  Google Scholar 

  • Maul, F., Vigneault, C., Sargent, S. A., Chau, K. V., & Caron, J. (1997). Nondestructive sensor system for evaluation of cooling efficiency. Proceeding of sensors for nondestructive testing international conference and tour, 18–21, 351–360.

    Google Scholar 

  • Mitchell, F. G. (1992). Cooling methods. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (2nd ed.). Davis, California, USA: University of California.

    Google Scholar 

  • Mitchell, F., Parsons, R., & Mayer, G. (1971). Cooling trials with plastic tray pack nectarines in various containers. California Agriculture, 25(9), 13–15.

    Google Scholar 

  • Neale, M., & Messer, H. (1976). Resistance of root and bulb vegetables to airflow. Journal of Agricultural Engineering Research, 21(3), 221–231.

    Article  Google Scholar 

  • Ngcobo, M. E. K., Opara, U. L., & Thiart, G. (2011). Effects of packaging liners on cooling rate and quality attributes of table grape (cv. regal seedless). Packaging Technology and Science. doi:10.1002/pts.961.

  • Nijemeisland, M., & Dixon, A. G. (2004). CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. AICHE Journal, 50(5), 906–921.

    Article  CAS  Google Scholar 

  • Norton, T., & Sun, D. W. (2006). Computational fluid dynamics (CFD)—an effective and efficient design and analysis tool for the food industry: a review. Trends in Food Science & Technology, 17(11), 600–620.

    Article  CAS  Google Scholar 

  • Opara, U. L. (2011). From hand holes to vent holes: what's next in innovative horticultural packaging? Inaugural Lecture (p. 24p). South Africa: Stellenbosch University.

    Google Scholar 

  • Opara, L. U., & Zou, Q. (2006). Novel computational fluid dynamics simulation software for thermal design and evaluation of horticultural packaging. International Journal of Postharvest Technology and Innovation, 1(2), 155–169.

    Article  Google Scholar 

  • Opara, L. U., & Zou, Q. (2007). Sensitivity analysis of a CFD modelling system for airflow and heat transfer of fresh food packaging: inlet air flow velocity and inside-package configurations. International Journal of Food Engineering, 3(5), 1263.

    Article  Google Scholar 

  • Ravindra, M. R., & Goswami, T. (2008). Comparative performance of precooling methods for the storage of mangoes (Mangifera indica L. CV. amrapali). Journal of Food Process Engineering, 31(3), 354–371.

    Article  Google Scholar 

  • Saenmuang, S., Al-Haq, M. I., Samarakoon, H. C., Makino, Y., Kawagoe, Y., & Oshita, S. (2011). Evaluation of models for spinach respiratory metabolism under low oxygen atmospheres. Food and Bioprocess Technology, Article in press.

  • Sastry, S., Baird, C., & Buffington, D. (1978). Transpiration rates of certain fruits and vegetables. ASHRAE Transactions, 84(2), 237–255.

    Google Scholar 

  • Singh, D., Mandal, G., & Jain, R. (2003). Effect of ventilation on shelf life and quality of peaches. In VII International symposium on temperate zone fruits in the tropics and subtropics. Part two 696. References

  • Singh, J., Olsen, E., Singh, S., Manley, J., & Wallace, F. (2008). The effect of ventilation and hand holes on loss of compression strength in corrugated boxes. Journal of Applied Packaging Research, 2(4), 227–238.

    Google Scholar 

  • Smale, N. J., Tanner, D. J., Amos, N. D., & Cleland, A. C. (2003). Airflow properties of packaged horticultural produce—a practical study. Acta Hort., 599, 443–450.

    Google Scholar 

  • Smale, N. J., Moureh, J., & Cortella, G. (2006). A review of numerical models of airflow in refrigerated food applications. International Journal of Refrigeration, 29(6), 911–930.

    Article  Google Scholar 

  • Staley, L., & Watson, E. (1961). Some design aspects of refrigerated potato storages. Canadian Agricultural Engineering, 3(1), 20–22.

    Google Scholar 

  • Stanley, R. (1989). The influence of temperature and packaging material on the post harvest quality of iceberg lettuce. Acta Hort. (ISHS), 244, 171–180.

    Google Scholar 

  • Talbot M (1988) An approach to better design of pressure-cooled produce containers. In Proceedings of the Florida State Horticultural Society 101, 165–175.

  • Tanner, D. J., Cleland, A. C., & Robertson, T. (2002a). A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: part 3, mass transfer modelling and testing. International Journal of Refrigeration, 25(1), 54–65.

    Article  Google Scholar 

  • Tanner, D. J., Cleland, A. C., & Opara, L. U. (2002b). A generalised mathematical modelling methodology for the design of horticultural food packages exposed to refrigerated conditions part 2. Heat transfer modelling and testing. International Journal of Refrigeration, 25(1), 43–53.

    Article  Google Scholar 

  • Tanner, D. J., Cleland, A. C., Opara, L. U., & Robertson, T. R. (2002c). A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: part 1, formulation. International Journal of Refrigeration, 25(1), 33–42.

    Article  Google Scholar 

  • Thompson, A. K. (1996). Postharvest technology of fruit and vegetables. Oxford: Blackwell.

    Google Scholar 

  • Thompson, J., & Knutson, J. (1997). Forced air cooling of strawberries in clamshell baskets. Perishables Handling Newsletter, 90, 29–30.

    Google Scholar 

  • Thompson, J., Mejia, D., & Singh, R. (2010). Energy use of commercial forced air coolers for fruit. Applied Engineering in Agriculture, 26(5), 919–924.

    Google Scholar 

  • Tutar, M., Erdogdu, F., & Toka, B. (2009). Computational modeling of airflow patterns and heat transfer prediction through stacked layers' products in a vented box during cooling. International Journal of Refrigeration, 32(2), 295–306.

    Article  CAS  Google Scholar 

  • Van der Sman, R. (2002). Prediction of airflow through a vented box by the Darcy–Forchheimer equation. Journal of Food Engineering, 55(1), 49–57.

    Article  Google Scholar 

  • Verboven, P., Hoang, M., Baelmans, M., & Nicolaī, B. (2004a). Airflow through beds of apples and chicory roots. Biosystems Engineering, 88(1), 117–125.

    Article  Google Scholar 

  • Verboven, P., Tijskens, E., Ramon, H., & Nicolaï, B. M. (2004b). Virtual filling and airflow simulation of boxes with horticultural products. In International conference postharvest unlimited downunder 2004. ISHS Acta Horticulturae, 687, 47–54.

    Google Scholar 

  • Verboven, P., Flick, D., Nicolaī, B., & Alvarez, G. (2006). Modelling transport phenomena in refrigerated food bulks, packages and stacks: basics and advances. International Journal of Refrigeration, 29(6), 985–997.

    Article  Google Scholar 

  • Vigneault, C. (2011). Vorkühlungsverfahren von Obst und Gemüse. In: Geyer M (ed) Lagerung von Obst und Gemüse. Chapter 3, Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, Germany.

  • Vigneault, C., & de Castro, L. R. (2005). Produce-simulator property evaluation for indirect airflow distribution measurement through horticultural crop package. Journal of Food, Agriculture & Environment, 3(2), 67–72.

    Google Scholar 

  • Vigneault, C., & Émond, J. P. (1998). Reusable container for the preservation of fresh fruits and vegetables. United States Patent number :, 5, 727,711.

    Google Scholar 

  • Vigneault, C., & Goyette, B. (2002a). Design of plastic container opening to optimize forced-air precooling of fruits and vegetables. Applied Engineering in Agriculture, 18(1), 73–76.

    Google Scholar 

  • Vigneault, C., & Goyette, B. (2002b). Largeur des ouvertures au fond de contenants de plastique utilisés pour la manutention des produits horticoles frais. Canadian Biosystems Engineering, 44(3), 7–10.

    Google Scholar 

  • Vigneault, C., & Goyette, B. (2003). Effect of tapered wall container on forced-air circulation system. Canadian Biosystems Engineering, 45(3), 23–26.

    Google Scholar 

  • Vigneault, C., & Goyette, B. (2005). Paramètres affectant le débit d’air à travers une masse de poireaux et leur taux de refroidissement. Cahiers Agricultures, 14(4), 383–389.

    Google Scholar 

  • Vigneault, C., & Sobral, D. (2008). Pré-resfriamento e refrigeração em pós-colheita de citros. In : Nascimento LM, de Negri JD & de Mattos Jr D. Topicos em qualidade e pós-colheita de frutas / Topicos en calidad y postcoscha de frutos. pp111-132. Centro APTA Citros Sylvio Moreira– IAC, Cordeirópolis, SP, Brasil.

  • Vigneault, C., Goyette, B., & Raghavan, G. S. V. (1995). Continuous flow liquid-ice system tested on broccoli. Canadian Agricultural Engineering, 37(3), 225–230.

    Google Scholar 

  • Vigneault, C., Goyette, B., Markarian, N., Hui, C., Côté, S., Charles, M. T., & Émond, J. (2004a). Plastic container opening area for optimum hydrocooling. Canadian Biosystems Engineering, 46(3), 41–44.

    Google Scholar 

  • Vigneault, C., Markarian, N. R., Da Silva, A., & Goyette, B. (2004b). Pressure drop during forced-air ventilation of various horticultural produce in containers with different opening configurations. Transactions of ASAE, 47(3), 807–814.

    Google Scholar 

  • Vigneault, C., de Castro, L. R., & Cortez, L. A. B. (2005a). A new approach to measure air distribution through horticultural crop packages. ISHS Acta Horticulturae., 682, 2239–2245.

    Google Scholar 

  • Vigneault, C., de Castro, L. R., & Cortez, L. A. B. (2005b). Effect of gravity on forced-air precooling. IASME Transactions., 3(2), 459–463.

    Google Scholar 

  • Vigneault, C., Goyette, B., & de Castro, L. R. (2006). Maximum slat width for cooling efficiency of horticultural produce in wooden crates. Postharvest Biology and Technology, 40(3), 308–313.

    Article  Google Scholar 

  • Vigneault, C., de Castro, L., Goyette, B., Markarian, N., Charles, M. T., Bourgeois, G., Foot, E. T. L., & Cortez, L. A. B. (2007). Indirect airflow distribution measurement method for horticultural crop package design. Canadian Biosystems Engineering, 49(3), 13–22.

    Google Scholar 

  • Vigneault, C., Thompson, J., Wu, S., Hui, K. P. C., & LeBlanc, D. L. (2009a). Transportation of fresh horticultural produce. In N. Benkeblia (Ed.), Postharvest technologies for horticultural crops (Vol 2) (pp. 1–24). Kerale, India: Research Signpost.

    Google Scholar 

  • Vigneault, C., Thompson, J., & Wu, S. (2009b). Designing container for handling fresh horticultural produce. In N. Benkeblia (Ed.), Postharvest Technologies for Horticultural Crops (Vol 2) (pp. 25–47). Kerale, India: Research Signpost.

    Google Scholar 

  • Wang, J. K., & Tunpun, K. (1969). Forced-air precooling of tomatoes in cartons. Transactions of ASAE, 12(6), 804–806.

    Google Scholar 

  • Wilhelm, L., Jones, D., & Mullins, C. (1978). Air flow resistance of snap beans. ASAE Paper 78–3058.

  • Wilhelm, L., Tompkins, F., & Mullins, C. (1983). Air flow resistance of bean and pea pods. Transactions of ASAE, 26(3), 946–949.

    Google Scholar 

  • Wills, R., McGlasson, W., Graham, D., & Joyce, D. (1998). Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed.). Sydney: UNSW Press Ltd.

    Google Scholar 

  • Xu, Y., & Burfoot, D. (1999). Simulating the bulk storage of foodstuffs. Journal of Food Engineering, 39(1), 23–29.

    Article  Google Scholar 

  • Zou, Q., Opara, L. U., & McKibbin, R. (2006a). A CFD modeling system for airflow and heat transfer in ventilated packaging for fresh foods: I. Initial analysis and development of mathematical models. Journal of Food Engineering, 77(4), 1037–1047.

    Article  Google Scholar 

  • Zou, Q., Opara, L. U., & McKibbin, R. (2006b). A CFD modeling system for airflow and heat transfer in ventilated packaging for fresh foods: II. Computational solution, software development, and model testing. Journal of Food Engineering, 77(4), 1048–1058.

    Article  Google Scholar 

Download references

Acknowledgments

This work is based upon the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. The financial support of the Postharvest Innovation Programme (PHI-2) and HortgroScience through the award of a project on ‘Packaging of the Future’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathare, P.B., Opara, U.L., Vigneault, C. et al. Design of Packaging Vents for Cooling Fresh Horticultural Produce. Food Bioprocess Technol 5, 2031–2045 (2012). https://doi.org/10.1007/s11947-012-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0883-9

Keywords

Navigation