Skip to main content

Advertisement

Log in

Pharmacogenetics of Osteoporosis: What is the Evidence?

  • Bone Genetics (S Ferrari, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The early genetic prediction of personal drug therapy outcome, both in terms of identification of poor responders or nonresponders, as well as of subjects at risk of developing adverse reactions, and its translation into the clinical practice are the main challenges of personalized medicine. The application of pharmacogenetic predictive tests will be very useful mostly in cases of chronic disorders, as in metabolic bone diseases, that require long-term treatments and for whom exist effective differently acting drugs to be alternatively chosen. Pharmacogenetic tests, prior to drug administration, would hypothetically grant the optimization of drug therapy, based on patient’s genotype, to ensure maximum efficacy with minimal adverse effects. This review aims to offer an overview on the principal findings in the field of pharmacogenetics of osteoporosis, and it will discuss future perspectives and possible clinical applications of pharmacogenetic tests for antiresorptive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358(22):2355–65.

    Article  PubMed  CAS  Google Scholar 

  2. Peacock M, Turner CH, Econs MJ, Foroud T. Genetics of osteoporosis. Endocr Rev. 2002;23:303–26.

    Article  PubMed  CAS  Google Scholar 

  3. Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31:629–62.

    Article  PubMed  CAS  Google Scholar 

  4. Richards JB, Rivadeneira F, Inouye M, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371:1505–12.

    Article  PubMed  CAS  Google Scholar 

  5. Rivadeneira F, Styrkársdottir U, Estrada K, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199–206.

    Article  PubMed  CAS  Google Scholar 

  6. Duncan EL, Danoy P, Kemp JP, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7:e1001372.

    Article  PubMed  CAS  Google Scholar 

  7. Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genet. 2012;44:491–501.

    Article  PubMed  CAS  Google Scholar 

  8. Altkorn D, Vokes T. Treatment of postmenopausal osteoporosis. JAMA. 2001;285:1415–8.

    Article  PubMed  CAS  Google Scholar 

  9. Delmas PD. Treatment of postmenopausal osteoporosis. Lancet. 2002;359:2018–26.

    Article  PubMed  CAS  Google Scholar 

  10. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40:S5–8.

    Article  CAS  Google Scholar 

  11. Nguyen TV, Eisman JA. Pharmacogenomics of osteoporosis: opportunities and challenges. J Musculoskelet Neuronal Interact. 2006;6:62–72.

    PubMed  CAS  Google Scholar 

  12. Cummings SR, Palermo L, Browner W, et al. Monitoring osteoporosis therapy with bone densitometry. JAMA. 2000;283(10):1318–21.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson JA, Evans WE. Molecular diagnostics as a predictive tool: genetics of drug efficacy and toxicity. Trends Mol Med. 2002;8:300–5.

    Article  PubMed  CAS  Google Scholar 

  14. Yahata T, Quan J, Tamura N, et al. Association between single nucleotide polymorphisms of estrogen receptor alpha gene and efficacy of HRT on bone mineral density in post-menopausal Japanese women. Hum Reprod. 2005;20:1860–6.

    Article  PubMed  CAS  Google Scholar 

  15. Rapuri PB, Gallagher JC, Knezetic JA, et al. Estrogen receptor alpha gene polymorphisms are associated with changes in bone remodeling markers and treatment response to estrogen. Maturitas. 2006;53:371–9.

    Article  PubMed  CAS  Google Scholar 

  16. Ongphiphadhanakul B, Chanprasertyothin S, Payatikul P, et al. Oestrogen-receptor-alpha gene polymorphism affects response in bone mineral density to oestrogen in post-menopausal women. Clin Endocrinol (Oxf). 2000;52:581–5.

    Article  CAS  Google Scholar 

  17. Salmén T, Heikkinen AM, Mahonen A, et al. The protective effect of hormone-replacement therapy on fracture risk is modulated by estrogen receptor alpha genotype in early postmenopausal women. J Bone Miner Res. 2000;15:2479–86.

    Article  PubMed  Google Scholar 

  18. Kurabayashi T, Tomita M, Matsushita H, et al. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am J Obstet Gynecol. 1999;180:1115–20.

    Article  PubMed  CAS  Google Scholar 

  19. Kurabayashi T, Matsushita H, Tomita M, et al. Association of vitamin D and estrogen receptor gene polymorphism with the effects of longterm hormone replacement therapy on bone mineral density. J Bone Miner Metab. 2004;22:241–7.

    Article  PubMed  CAS  Google Scholar 

  20. Giguère Y, Dodin S, Blanchet C, et al. The association between heel ultrasound and hormone replacement therapy is modulated by a two-locus vitamin D and estrogen receptor genotype. J Bone Miner Res. 2000;15:1076–84.

    Article  PubMed  Google Scholar 

  21. Simsek M, Cetin Z, Bilgen T, et al. Effects of hormone replacement therapy on bone mineral density in Turkish patients with or without COL1A1 Sp1 binding site polymorphism. J Obstet Gynaecol Res. 2008;34:73–7.

    Article  PubMed  CAS  Google Scholar 

  22. Palomba S, Numis FG, Mossetti G, et al. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum Reprod. 2003;18:192–8.

    Article  PubMed  CAS  Google Scholar 

  23. Heilberg IP, Hernandez E, Alonzo E, et al. Estrogen receptor (ER) gene polymorphism may predict the bone mineral density response to raloxifene in postmenopausal women on chronic hemodialysis. Ren Fail. 2005;27:155–61.

    PubMed  CAS  Google Scholar 

  24. Marc J, Prezelj J, Komel R, et al. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int. 1999;10:303–6.

    Article  PubMed  CAS  Google Scholar 

  25. Palomba S, Orio Jr F, Russo T, et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women, A 1-year multicenter, randomized and controlled trial. Osteoporos Int. 2005;16:943–52.

    Article  PubMed  CAS  Google Scholar 

  26. Qureshi AM, Herd RJ, Blake GM, et al. Colia1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int. 2002;70:158–63.

    Article  PubMed  CAS  Google Scholar 

  27. Arko B, Prezelj J, Komel R, et al. No major effect of estrogen receptor beta gene RsaI polymorphism on bone mineral density and response to alendronate therapy in postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2002;81:147–52.

    Article  PubMed  CAS  Google Scholar 

  28. Kruk M, Ralston SH, Albagha OM. LRP5 Polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int. 2009;84:171–9.

    Article  PubMed  CAS  Google Scholar 

  29. Wang C, He JW, Qin YJ, et al. Osteoprotegerin gene polymorphism and therapeutic response to alendronate in postmenopausal women with osteoporosis. Honghua Yi Xue Za Zhi. 2009;89(42):2958–62. Article in Chinese.

    CAS  Google Scholar 

  30. • Kim H, Choe SA, Ku SY, et al. Association between Wnt signaling pathway gene polymorphisms and bone response to hormone therapy in postmenopausal Korean women. Menopause. 2011;18(7):808–13. The first osteoporosis pharmacogenetic study on genes of the Wnt signaling pathway..

    Article  PubMed  Google Scholar 

  31. Marini F, Falchetti A, Silvestri S, et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin. 2008;24:2609–15.

    Article  PubMed  CAS  Google Scholar 

  32. Olmos JM, Zarrabeitia MT, Hernández JL, et al. Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J. 2010. doi:10.1038/tpj.2010.88.

  33. • Choi HJ, Choi JY, Cho SW, et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei Med J. 2010;51:231–8. A pharmacogenetic study about the role of genes of the mevalonate pathway in the response to NBPs..

    Article  PubMed  CAS  Google Scholar 

  34. Carbonell Sala S, Falchetti A, Martineti V, et al. Intron 1 polymorphism (A/C) of FDPS gene: a new genetic marker for N-BPs therapy response? [abstract SA121]. Presented at the ASBMR XXVII Annual Meeting, Nashville, USA, 2005. J Bone Miner Res. 2005;20(suppl1):s1–s512.

    Google Scholar 

  35. Haga H, Yamada R, Ohnishi Y, et al. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet. 2002;47:605–10.

    Article  PubMed  CAS  Google Scholar 

  36. Guañabens N, Peris P, Monegal A, et al. Lower extremity stress fractures during intermittent cyclical etidronate treatment for osteoporosis. Calcif Tissue Int. 1994;54(5):431–4.

    Article  PubMed  Google Scholar 

  37. Armamento-Villareal R, Napoli N, Diemer K, et al. Bone turnover in bone biopsies of patients with low-energy cortical fractures receiving bisphosphonates: a case series. Calcif Tissue Int. 2009;85(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  38. Goh SK, Yang KY, Koh JS, et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J Bone Joint Surg Br. 2007;89(3):349–53.

    Article  PubMed  Google Scholar 

  39. Ing-Lorenzini K, Desmeules J, Plachta O, et al. Low-energy femoral fractures associated with the long-term use of bisphosphonates: a case series from a Swiss university hospital. Drug Saf. 2009;32(9):775–85.

    Article  PubMed  CAS  Google Scholar 

  40. Kwek EB, Goh SK, Koh JS, et al. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39(2):224–31.

    Article  PubMed  Google Scholar 

  41. Lenart BA, Neviaser AS, Lyman S, et al. Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2009;20(8):1353–62.

    Article  PubMed  CAS  Google Scholar 

  42. Neviaser AS, Lane JM, Lenart BA, et al. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22(5):346–50.

    Article  PubMed  Google Scholar 

  43. Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90(3):1294–301.

    Article  PubMed  CAS  Google Scholar 

  44. Rizzoli R, Burlet N, Cahall D, et al. Osteonecrosis of the jaw and bisphosphonate treatment for osteoporosis. Bone. 2008;42(5):841–7.

    Article  PubMed  CAS  Google Scholar 

  45. Sarasquete ME, García-Sanz R, Marín L, et al. Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood. 2008;112:2709–12.

    Article  PubMed  CAS  Google Scholar 

  46. Marini F, Tonelli P, Cavalli L, et al. Pharmacogenetics of bisphosphonate-associated osteonecrosis of the jaw. Front Biosc (Elite Ed). 2010;3:364–70.

    Article  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Brandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marini, F., Brandi, M.L. Pharmacogenetics of Osteoporosis: What is the Evidence?. Curr Osteoporos Rep 10, 221–227 (2012). https://doi.org/10.1007/s11914-012-0110-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0110-7

Keywords

Navigation