Skip to main content

Advertisement

Log in

Porphyric Neuropathy: Pathophysiology, Diagnosis, and Updated Management

  • Autonomic Dysfunction (L.H. Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

A Correction to this article was published on 10 December 2020

This article has been updated

Abstract

Purpose of Review

To review the peripheral neurological complications of the acute hepatic porphyrias, as well as the latest advances in their pathophysiology and management.

Recent Findings

The diagnosis of porphyric neuropathy remains challenging as varying neuropathic patterns are encountered depending on disease stage, including a non-length-dependent distribution pattern. The major pathophysiologic mechanism is δ-aminolevulinic acid (ALA)–induced neurotoxicity. The less restrictive blood-nerve barrier in the autonomic ganglia and myenteric plexus may explain the frequency of dysautonomic manifestations. Recently, a prophylactic small interfering RNA (siRNA)-based therapy that reduces hepatic ALA Synthase-1 mRNA was approved for patients with recurrent neuro-visceral attacks.

Summary

Neurologists should appreciate the varying patterns of porphyric neuropathy. As with most toxin-induced axonopathies, long-term outcomes depend on early diagnosis and treatment. While the short-term clinical and biochemical benefits of siRNA-based therapy are known, its long-term effects on motor recovery, chronic pain, and dysautonomic manifestations are yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Balwani M, Wang B, Anderson KE, Bloomer JR, Bissell DM, Bonkovsky HL, et al. Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology. 2017;66:1314–22. https://doi.org/10.1002/hep.29313.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson KE, Sassa S, Bishop DF, et al. Disorders of heme synthesis. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic molecular basis of inherited disease. 8th ed. New York: McGraw-Hill Companies; 2001.

    Google Scholar 

  3. • Bissell DM, Anderson KE, Bonkovsky HL. Porphyria. N Engl J Med. 2017;377:2101. https://doi.org/10.1056/NEJMc1712682This is a classic review of the three most common porphyria types: AIP, porphyria cutanea tarda, and protoporphyrias.

    Article  PubMed  Google Scholar 

  4. Bissell DM, Wang B. Acute hepatic porphyria. J Clin Transl Hepatol. 2015;3:17–26. https://doi.org/10.14218/JCTH.2014.00039.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stewart PM, Hensley WJ. An acute attack of variegate porphyria complicated by severe autonomic neuropathy. Aust NZ J Med. 1981;11:82–3. https://doi.org/10.1111/j.1445-5994.1981.tb03745.x.

    Article  CAS  Google Scholar 

  6. Barohn RJ, Sanchez JA, Anderson KE. Acute peripheral neuropathy due to hereditary coproporphyria. Muscle Nerve. 1994;17:793–9. https://doi.org/10.1002/mus.880170715.

    Article  CAS  PubMed  Google Scholar 

  7. Lin CS, Krishnan AV, Lee MJ, Zagami AS, You HL, Yang CC, et al. Nerve function and dysfunction in acute intermittent porphyria. Brain. 2008;131:2510–9. https://doi.org/10.1093/brain/awn152.

    Article  PubMed  Google Scholar 

  8. Doss MO, Stauch T, Gross U, Renz M, Akagi R, Doss-Frank M, et al. The third case of Doss porphyria (delta-amino-levulinic acid dehydratase deficiency) in Germany. J Inherit Metab Dis. 2004;27:529–36. https://doi.org/10.1023/B:BOLI.0000037341.21975.9d.

    Article  CAS  PubMed  Google Scholar 

  9. Akagi R, Kato N, Inoue R, Anderson KE, Jaffe EK, Sassa S. Delta-Aminolevulinate dehydratase (ALAD) porphyria: the first case in North America with two novel ALAD mutations. Mol Genet Metab. 2006;87:329–36. https://doi.org/10.1016/j.ymgme.2005.10.011.

    Article  CAS  PubMed  Google Scholar 

  10. Doss M, Benkmann HG, Goedde HW. Delta-Aminolevulinic acid dehydrase (porphobilinogen synthase) in two families with inherited enzyme deficiency. Clin Genet. 1986;30:191–8. https://doi.org/10.1111/j.1399-0004.1986.tb00594.x.

    Article  CAS  PubMed  Google Scholar 

  11. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133:1–9. https://doi.org/10.1007/s00439-013-1358-4.

    Article  CAS  PubMed  Google Scholar 

  12. Bonkovsky HL, Maddukuri VC, Yazici C, Anderson KE, Bissell DM, Bloomer JR, et al. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med. 2014;127:1233–41. https://doi.org/10.1016/j.amjmed.2014.06.036.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Solis-Villa C, Hakenberg J, Qiao W, Srinivasan RR, Yasuda M, et al. Acute intermittent porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Hum Mutat. 2016;37:1215–22. https://doi.org/10.1002/humu.23067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersson C, Floderus Y, Wikberg A, Lithner F. The W198X and R173W mutations in the porphobilinogen deaminase gene in acute intermittent porphyria have higher clinical penetrance than R167W. A population-based study. Scand J Clin Lab Invest. 2000;60:643–8. https://doi.org/10.1080/003655100300054891.

    Article  CAS  PubMed  Google Scholar 

  15. Elder G, Harper P, Badminton M, Sandberg S, Deybach JC. The incidence of inherited porphyrias in Europe. J Inherit Metab Dis. 2013;36:849–57. https://doi.org/10.1007/s10545-012-9544-4.

    Article  PubMed  Google Scholar 

  16. Albers JW, Fink JK. Porphyric neuropathy. Muscle Nerve. 2004;30:410–22. https://doi.org/10.1002/mus.20137.

    Article  PubMed  Google Scholar 

  17. Naik H, Stoecker M, Sanderson SC, Balwani M, Desnick RJ. Experiences and concerns of patients with recurrent attacks of acute hepatic porphyria: a qualitative study. Mol Genet Metab. 2016;119:278–83. https://doi.org/10.1016/j.ymgme.2016.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu YP, Lien WC, Fang CC, Lai TI, Chen WJ, Wang HP. ED presentation of acute porphyria. Am J Emerg Med. 2005;23:164–7. https://doi.org/10.1016/j.ajem.2004.03.013.

    Article  CAS  PubMed  Google Scholar 

  19. Ridley A. The neuropathy of acute intermittent porphyria. Q J Med. 1969;38:307–33.

    CAS  PubMed  Google Scholar 

  20. Hift RJ, Meissner PN. An analysis of 112 acute porphyric attacks in Cape Town, South Africa: evidence that acute intermittent porphyria and variegate porphyria differ in susceptibility and severity. Medicine (Baltimore). 2005;84:48–60. https://doi.org/10.1097/01.md.0000152454.56435.f3.

    Article  Google Scholar 

  21. Goldberg A. Acute intermittent porphyria: a study of 50 cases. Q J Med. 1959;28:183–209.

    CAS  PubMed  Google Scholar 

  22. Stein JA, Tschudy DP. Acute intermittent porphyria. A clinical and biochemical study of 46 patients. Medicine (Baltimore). 1970;49:1–16.

    Article  CAS  Google Scholar 

  23. Pischik E, Kauppinen R. Neurological manifestations of acute intermittent porphyria. Cell Mol Biol. 2009;55:72–83.

    CAS  PubMed  Google Scholar 

  24. •• Gouya L, Ventura P, Balwani M, Bissell DM, Rees DC, Stolzel U, et al. EXPLORE: a prospective, multinational, natural history study of patients with acute hepatic porphyria with recurrent attacks. Hepatology. 2020;71:1546–58. https://doi.org/10.1002/hep.30936This was a prospective natural history study characterizing disease activity in patients with AHP who experience recurrent attacks. It showed that 2/3 of these patients develop chronic neuropathic, myalgic, lower-back, or abdominal pains.

    Article  CAS  PubMed  Google Scholar 

  25. Mustajoki P, Mustajoki S, Rautio A, Arvela P, Pelkonen O. Effects of heme arginate on cytochrome P450-mediated metabolism of drugs in patients with variegate porphyria and in healthy men. Clin Pharmacol Ther. 1994;56:9–13. https://doi.org/10.1038/clpt.1994.94.

    Article  CAS  PubMed  Google Scholar 

  26. Ridley A, Hierons R, Cavanagh JB. Tachycardia and the neuropathy of porphyria. Lancet. 1968;2:708–10. https://doi.org/10.1016/s0140-6736(68)90751-4.

    Article  CAS  PubMed  Google Scholar 

  27. Mustajoki P, Koskelo P. Hereditary hepatic porphyrias in Finland. Acta Med Scand. 1976;200:171–8. https://doi.org/10.1111/j.0954-6820.1976.tb08216.x.

    Article  CAS  PubMed  Google Scholar 

  28. Kauppinen R. Porphyrias. Lancet. 2005;365:241–52. https://doi.org/10.1016/S0140-6736(05)17744-7.

    Article  CAS  PubMed  Google Scholar 

  29. Pischik E, Kauppinen R. An update of clinical management of acute intermittent porphyria. Appl Clin Genet. 2015;8:201–14. https://doi.org/10.2147/TACG.S48605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersson C, Innala E, Backstrom T. Acute intermittent porphyria in women: clinical expression, use and experience of exogenous sex hormones. A population-based study in northern Sweden. J Intern Med. 2003;254:176–83. https://doi.org/10.1046/j.1365-2796.2003.01172.x.

    Article  CAS  PubMed  Google Scholar 

  31. Wu CL, Ro LS, Jung SM, Tsai TC, Chu CC, Lyu RK, et al. Clinical presentation and electrophysiological findings of porphyric neuropathies: a follow-up study. Muscle Nerve. 2015;51:363–9. https://doi.org/10.1002/mus.24327.

    Article  PubMed  Google Scholar 

  32. Marsden JT, Guppy S, Stein P, Cox TM, Badminton M, Gardiner T, et al. Audit of the use of regular haem arginate infusions in patients with acute porphyria to prevent recurrent symptoms. JIMD Rep. 2015;22:57–65. https://doi.org/10.1007/8904_2015_411.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hsieh CH, Tsai HH, Lu TH, Chen YC, Hsieh MW, Chuang YC. Acute intermittent porphyria with peripheral neuropathy complicated by small-fiber neuropathy. Neuropathology. 2007;27:133–8. https://doi.org/10.1111/j.1440-1789.2006.00751.x.

    Article  PubMed  Google Scholar 

  34. Younger DS, Tanji K. Demyelinating neuropathy in genetically confirmed acute intermittent porphyria. Muscle Nerve. 2015;52:916–7. https://doi.org/10.1002/mus.24733.

    Article  PubMed  Google Scholar 

  35. Laiwah AC, Macphee GJ, Boyle P, Moore MR, Goldberg A. Autonomic neuropathy in acute intermittent porphyria. J Neurol Neurosurg Psychiatry. 1985;48(10):1025–30. https://doi.org/10.1136/jnnp.48.10.1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan AC, Wilder-Smith EP. Small fiber neuropathy: getting bigger! Muscle Nerve. 2016;53:671–82. https://doi.org/10.1002/mus.25082.

    Article  PubMed  Google Scholar 

  37. Puy H, Gouya L, Deybach JC. Porphyrias. Lancet. 2010;375:924–37. https://doi.org/10.1016/S0140-6736(09)61925-5.

    Article  CAS  PubMed  Google Scholar 

  38. Woolf J, Marsden JT, Degg T, Whatley S, Reed P, Brazil N, et al. Best practice guidelines on first-line laboratory testing for porphyria. Ann Clin Biochem. 2017;54:188–98. https://doi.org/10.1177/0004563216667965.

    Article  PubMed  Google Scholar 

  39. Andersson C, Thunell S, Floderus Y, Forsell C, Lundin G, Anvret M, et al. Diagnosis of acute intermittent porphyria in northern Sweden: an evaluation of mutation analysis and biochemical methods. J Intern Med. 1995;237:301–8. https://doi.org/10.1111/j.1365-2796.1995.tb01179.x.

    Article  CAS  PubMed  Google Scholar 

  40. Marsden JT, Rees DC. Urinary excretion of porphyrins, porphobilinogen and delta-aminolaevulinic acid following an attack of acute intermittent porphyria. J Clin Pathol. 2014;67:60–5. https://doi.org/10.1136/jclinpath-2012-201367.

    Article  CAS  PubMed  Google Scholar 

  41. Kauppinen R, von und zu Fraunberg M. Molecular and biochemical studies of acute intermittent porphyria in 196 patients and their families. Clin Chem. 2002;48:1891–900.

    Article  CAS  Google Scholar 

  42. Reichenmiller HE, Zysno EA. Neuropsychiatric disorders in 4 cases of acute intermittent porphyria. Verh Dtsch Ges Inn Med. 1969;75:748–52.

    CAS  PubMed  Google Scholar 

  43. Nagler W. Peripheral neuropathy in acute intermittent porphyrias. Arch Phys Med Rehabil. 1971;52:426–31.

    CAS  PubMed  Google Scholar 

  44. Flugel KA, Druschky KF. Electromyogram and nerve conduction in patients with acute intermittent porphyria. J Neurol. 1977;214:267–79. https://doi.org/10.1007/bf00316572.

    Article  CAS  PubMed  Google Scholar 

  45. Albers JW, Robertson WC Jr, Daube JR. Electrodiagnostic findings in acute porphyric neuropathy. Muscle Nerve. 1978;1:292–6. https://doi.org/10.1002/mus.880010405.

    Article  CAS  PubMed  Google Scholar 

  46. King PH, Petersen NE, Rakhra R, Schreiber WE. Porphyria presenting with bilateral radial motor neuropathy: evidence of a novel gene mutation. Neurology. 2002;58:1118–21. https://doi.org/10.1212/wnl.58.7.1118.

    Article  CAS  PubMed  Google Scholar 

  47. Kuo HC, Lee MJ, Chuang WL, Huang CC. Acute intermittent porphyria with peripheral neuropathy: a follow-up study after hematin treatment. J Neurol Sci. 2007;260:231–5. https://doi.org/10.1016/j.jns.2007.03.018.

    Article  PubMed  Google Scholar 

  48. Windebank AJ, Bonkovsky HL. Porphyric neuropathy. In: Dyck PJ, Thomas PK, editors. Peripheral neuropathy. Philadelphia: Elsevier Saunders; 2005.

    Google Scholar 

  49. Blom H, Andersson C, Olofsson BO, Bjerle P, Wiklund U, Lithner F. Assessment of autonomic nerve function in acute intermittent porphyria; a study based on spectral analysis of heart rate variability. J Intern Med. 1996;240:73–9. https://doi.org/10.1046/j.1365-2796.1996.513854000.x.

    Article  CAS  PubMed  Google Scholar 

  50. Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019;38:3. https://doi.org/10.1186/s40101-019-0193-2.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 1996:17:354–81.

  52. Lindberg RL, Martini R, Baumgartner M, Erne B, Borg J, Zielasek J, et al. Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. J Clin Invest. 1999;103:1127–34. https://doi.org/10.1172/jci5986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12:747–58. https://doi.org/10.1111/j.1468-1331.2005.01260.x.

    Article  CAS  PubMed  Google Scholar 

  54. Dimachkie MM, Barohn RJ. Guillain-Barre syndrome and variants. Neurol Clin. 2013;31:491–510. https://doi.org/10.1016/j.ncl.2013.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bril V, Katzberg HD. Acquired immune axonal neuropathies. Continuum (Minneap Minn). 2014;20:1261–73. https://doi.org/10.1212/01.CON.0000455882.83803.72.

    Article  Google Scholar 

  56. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79:391–6. https://doi.org/10.1136/pmj.79.933.391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rubens O, Logina I, Kravale I, Eglite M, Donaghy M. Peripheral neuropathy in chronic occupational inorganic lead exposure: a clinical and electrophysiological study. J Neurol Neurosurg Psychiatry. 2001;71:200–4. https://doi.org/10.1136/jnnp.71.2.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Staff NP, Dyck PJ, Warner MA. Postsurgical inflammatory neuropathy should be considered in the differential diagnosis of diaphragm paralysis after surgery. Anesthesiology. 2014;120:1057. https://doi.org/10.1097/ALN.0000000000000130.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mitchell G, Larochelle J, Lambert M, Michaud J, Grenier A, Ogier H, et al. Neurologic crises in hereditary tyrosinemia. N Engl J Med. 1990;322:432–7. https://doi.org/10.1056/NEJM199002153220704.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med. 2005;142:439–50. https://doi.org/10.7326/0003-4819-142-6-200503150-00010.

    Article  PubMed  Google Scholar 

  61. Lin CS, Park SB, Krishnan AV. Porphyric neuropathy. Handb Clin Neurol. 2013;115:613–27. https://doi.org/10.1016/B978-0-444-52902-2.00036-9.

    Article  PubMed  Google Scholar 

  62. Meyer UA, Schuurmans MM, Lindberg RL. Acute porphyrias: pathogenesis of neurological manifestations. Semin Liver Dis. 1998;18:43–52. https://doi.org/10.1055/s-2007-1007139.

    Article  CAS  PubMed  Google Scholar 

  63. Emanuelli T, Pagel FW, Alves LB, Regner A, Souza DO. 5-Aminolevulinic acid inhibits [3H]muscimol binding to human and rat brain synaptic membranes. Neurochem Res. 2001;26:101–5. https://doi.org/10.1023/a:1011034409814.

    Article  CAS  PubMed  Google Scholar 

  64. Soonawalla ZF, Orug T, Badminton MN, Elder GH, Rhodes JM, Bramhall SR, et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet. 2004;363:705–6. https://doi.org/10.1016/S0140-6736(04)15646-8.

    Article  PubMed  Google Scholar 

  65. Yasuda M, Erwin AL, Liu LU, Balwani M, Chen B, Kadirvel S, et al. Liver transplantation for acute intermittent porphyria: biochemical and pathologic studies of the explanted liver. Mol Med. 2015;21:487–95. https://doi.org/10.2119/molmed.2015.00099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dowman JK, Gunson BK, Bramhall S, Badminton MN, Newsome PN. Liver transplantation from donors with acute intermittent porphyria. Ann Intern Med. 2011;154:571–2. https://doi.org/10.7326/0003-4819-154-8-201104190-00015.

    Article  PubMed  Google Scholar 

  67. Gouya L, Ventura P, Balwani M, Bissell DM, Rees DC, Stolzel U, et al. EXPLORE: a prospective, multinational, natural history study of patients with acute hepatic porphyria with recurrent attacks. Hepatology. 2019;71:1546–58. https://doi.org/10.1002/hep.30936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muller WE, Snyder SH. Delta-Aminolevulinic acid: influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann Neurol. 1977;2:340–2. https://doi.org/10.1002/ana.410020415.

    Article  CAS  PubMed  Google Scholar 

  69. Monteiro HP, Bechara EJ, Abdalla DS. Free radicals involvement in neurological porphyrias and lead poisoning. Mol Cell Biochem. 1991;103:73–83. https://doi.org/10.1007/BF00229595.

    Article  CAS  PubMed  Google Scholar 

  70. Felitsyn N, McLeod C, Shroads AL, Stacpoole PW, Notterpek L. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem. 2008;106:2068–79. https://doi.org/10.1111/j.1471-4159.2008.05552.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shimura M, Nozawa N, Ogawa-Tominaga M, Fushimi T, Tajika M, Ichimoto K, et al. Effects of 5-aminolevulinic acid and sodium ferrous citrate on fibroblasts from individuals with mitochondrial diseases. Sci Rep. 2019;9:10549. https://doi.org/10.1038/s41598-019-46772-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Onuki J, Chen Y, Teixeira PC, Schumacher RI, Medeiros MH, Van Houten B, et al. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Arch Biochem Biophys. 2004;432:178–87. https://doi.org/10.1016/j.abb.2004.09.030.

    Article  CAS  PubMed  Google Scholar 

  73. Dixon N, Li T, Marion B, Faust D, Dozier S, Molina A, et al. Pilot study of mitochondrial bioenergetics in subjects with acute porphyrias. Mol Genet Metab. 2019;128:228–35. https://doi.org/10.1016/j.ymgme.2019.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. • Palladino SP, Helton ES, Jain P, Dong C, Crowley MR, Crossman DK, et al. The human blood-nerve barrier transcriptome. Sci Rep. 2017;7:17477. https://doi.org/10.1038/s41598-017-17475-yThe study performed RNA-sequencing to analyze the different transcriptomes involved in the structure of BNB, identifying unique protein transporters for ALA in the BNB, SLC36A1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Denny-Brown D, Sciarra D. Changes in the nervous system in acute porphyria. Brain. 1945;68:1–16.

    Article  Google Scholar 

  76. Gibson JB, Goldberg A. The neuropathology of acute porphyria. J Pathol Bacteriol. 1956;71:495–509. https://doi.org/10.1002/path.1700710222.

    Article  CAS  PubMed  Google Scholar 

  77. Cutler MG, Turner JM, Moore MR. A comparative study of the effects of delta-aminolaevulinic acid and the GABAA agonist, muscimol, in rat jejunal preparations. Pharmacol Toxicol. 1991;69:52–5. https://doi.org/10.1111/j.1600-0773.1991.tb00409.x.

    Article  CAS  PubMed  Google Scholar 

  78. Doring F, Walter J, Will J, Focking M, Boll M, Amasheh S, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998;101:2761–7. https://doi.org/10.1172/JCI1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frølund S, Marquez OC, Larsen M, Brodin B, Nielsen CU. Delta-aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). Br J Pharmacol. 2010;159:1339–53. https://doi.org/10.1111/j.1476-5381.2009.00620.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Linden IB, Tokola O, Karlsson M, Tenhunen R. Fate of haem after parenteral administration of haem arginate to rabbits. J Pharm Pharmacol. 1987;39:96–102. https://doi.org/10.1111/j.2042-7158.1987.tb06952.x.

    Article  CAS  PubMed  Google Scholar 

  81. Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochim Biophys Acta. 1763;2006:723–36. https://doi.org/10.1016/j.bbamcr.2006.05.005.

    Article  CAS  Google Scholar 

  82. Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005;122:505–15. https://doi.org/10.1016/j.cell.2005.06.040.

    Article  CAS  PubMed  Google Scholar 

  83. Stein PE, Badminton MN, Rees DC. Update review of the acute porphyrias. Br J Haematol. 2017;176:527–38. https://doi.org/10.1111/bjh.14459.

    Article  PubMed  Google Scholar 

  84. Stein P, Badminton M, Barth J, Rees D, Stewart MF, British, et al. Best practice guidelines on clinical management of acute attacks of porphyria and their complications. Ann Clin Biochem. 2013;50:217–23. https://doi.org/10.1177/0004563212474555.

    Article  PubMed  Google Scholar 

  85. Muiesan ML, Salvetti M, Amadoro V, di Somma S, Perlini S, Semplicini A, et al. An update on hypertensive emergencies and urgencies. J Cardiovasc Med. 2015;16:372–82. https://doi.org/10.2459/JCM.0000000000000223.

    Article  Google Scholar 

  86. Yrjonen A, Pischik E, Mehtala S, Kauppinen R. A novel 19-bp deletion of exon 15 in the HMBS gene causing acute intermittent porphyria associating with rhabdomyolysis during an acute attack. Clin Genet. 2008;74(4):396–8. https://doi.org/10.1111/j.1399-0004.2008.01061.x.

    Article  CAS  PubMed  Google Scholar 

  87. Susa S, Daimon M, Morita Y, Kitagawa M, Hirata A, Manaka H, et al. Acute intermittent porphyria with central pontine myelinolysis and cortical laminar necrosis. Neuroradiology. 1999;41:835–9. https://doi.org/10.1007/s002340050852.

    Article  CAS  PubMed  Google Scholar 

  88. Bonkovsky HL, Tschudy DP, Collins A, Doherty J, Bossenmaier I, Cardinal R, et al. Repression of the overproduction of porphyrin precursors in acute intermittent porphyria by intravenous infusions of hematin. Proc Natl Acad Sci U S A. 1971;68:2725–9. https://doi.org/10.1073/pnas.68.11.2725.

    Article  Google Scholar 

  89. Anderson KE, Bonkovsky HL, Bloomer JR, Shedlofsky SI. Reconstitution of hematin for intravenous infusion. Ann Intern Med. 2006;144:537–8. https://doi.org/10.7326/0003-4819-144-7-200604040-00023.

    Article  PubMed  Google Scholar 

  90. Glueck R, Green D, Cohen I, Ts'ao CH. Hematin: unique effects of hemostasis. Blood. 1983;61:243–9.

    Article  CAS  Google Scholar 

  91. Willandt B, Langendonk JG, Biermann K, Meersseman W, D'Heygere F, George C, et al. Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: a case series. JIMD Rep. 2016;25:77–81. https://doi.org/10.1007/8904_2015_458.

    Article  PubMed  Google Scholar 

  92. Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. Liver transplantation in the management of porphyria. Hepatology. 2014;60:1082–9. https://doi.org/10.1002/hep.27086.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Seth AK, Badminton MN, Mirza D, Russell S, Elias E. Liver transplantation for porphyria: who, when, and how? Liver Transpl. 2007;13:1219–27. https://doi.org/10.1002/lt.21261.

    Article  PubMed  Google Scholar 

  94. Dowman JK, Gunson BK, Mirza DF, Bramhall SR, Badminton MN, Newsome PN, et al. Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis. Liver Transpl. 2012;18:195–200. https://doi.org/10.1002/lt.22345.

    Article  PubMed  PubMed Central  Google Scholar 

  95. •• Sardh E, Rejkjaer L, Andersson DE, Harper P. Safety, pharmacokinetics and pharmocodynamics of recombinant human porphobilinogen deaminase in healthy subjects and asymptomatic carriers of the acute intermittent porphyria gene who have increased porphyrin precursor excretion. Clin Pharmacokinet. 2007;46:335–49. https://doi.org/10.2165/00003088-200746040-00006This was a phase-1 trial of givosiran in AIP patients. It showed that sustained reductions in ALAS1 mRNA, ALA, and PBG levels occur after monthly subcutaneus injection of the medication and were associated with significant reduction in the annualized attack rate.

    Article  CAS  PubMed  Google Scholar 

  96. Yasuda M, Bishop DF, Fowkes M, Cheng SH, Gan L, Desnick RJ. AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther. 2010;18:17–22. https://doi.org/10.1038/mt.2009.250.

    Article  CAS  PubMed  Google Scholar 

  97. D'Avola D, Lopez-Franco E, Sangro B, Paneda A, Grossios N, Gil-Farina I, et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J Hepatol. 2016;65:776–83. https://doi.org/10.1016/j.jhep.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  98. •• Balwani M, Sardh E, Ventura P, Peiro PA, Rees DC, Stolzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382:2289–301. https://doi.org/10.1056/NEJMoa1913147This was a double-blind, placebo-controlled, phase-3 trial demonstrating the efficacy of givosiran in reducing the annualized attack rate and the annual number of days of IV hemin use in patients with recurrent AIP.

    Article  CAS  PubMed  Google Scholar 

  99. Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380:549–58. https://doi.org/10.1056/NEJMoa1807838.

    Article  PubMed  Google Scholar 

  100. Lin TC, Lai SL, Hsu SP, Ro LS. Treatment of neuropathic pain in acute intermittent porphyria with gabapentin. J Formos Med Assoc. 2013;112:578–9. https://doi.org/10.1016/j.jfma.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Peter H. King, Professor of Neurology, The University of Alabama at Birmingham, for the critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kazamel.

Ethics declarations

Conflict of Interest

Dr. Kazamel received consulting fees from Akcea Therapeutics.

Dr. Desnick is a consultant for Alnylam Pharmaceuticals and Recordati Rare Diseases. He has received grants from both entities. He receives royalties for a licensed patent to Alnylam Pharmaceuticals.

Dr. Quigley received consulting fees from Alnylam Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Autonomic Dysfunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazamel, M., Desnick, R.J. & Quigley, J.G. Porphyric Neuropathy: Pathophysiology, Diagnosis, and Updated Management. Curr Neurol Neurosci Rep 20, 56 (2020). https://doi.org/10.1007/s11910-020-01078-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01078-8

Keywords

Navigation