Skip to main content

Advertisement

Log in

Retinal Diseases that Can Masquerade as Neurological Causes of Vision Loss

  • Neuro-Ophthalmology (A Kawasaki, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to discuss retinal diseases that may masquerade as neurological causes of vision loss and highlights modern ophthalmic ancillary testing that can help to establish these diagnoses.

Recent Findings

Retinal diseases with signs and symptoms overlapping with neurological causes of vision loss include central serous chorioretinopathy, retinal ischemia, acute macular neuroretinopathy, Acute zonal occult outer retinopathy (AZOOR) complex diseases, paraneoplastic retinopathy, retinal dystrophy, and toxic retinopathy. Diagnosis is facilitated by electrophysiologic studies and multimodal ophthalmic imaging including optical coherence tomography and fundus autofluorescence imaging. Looking into the future, translation of adaptive optics ophthalmoscopy into clinical practice may facilitate early detection of microscopic retinal abnormalities that characterize these conditions.

Summary

With conventional methods of physical examination, diagnosis of retinal diseases that may masquerade as neurological causes of vision loss can be challenging. Current advance in multimodal ophthalmic imaging along with electrophysiologic studies enhances the provider’s ability to make early diagnosis and monitor progression of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Newman N, Biousse V. Diagnostic approach to vision loss. Continuum (Minneap Minn). 2014;20(4 Neuro-ophthalmology):785–815. https://doi.org/10.1212/01.Con.0000453317.67637.46.

    Article  Google Scholar 

  2. Glaser JS, Savino PJ, Sumers KD, McDonald SA, Knighton RW. The photostress recovery test in the clinical assessment of visual function. Am J Ophthalmol. 1977;83(2):255–60. https://doi.org/10.1016/0002-9394(77)90624-9.

    Article  CAS  PubMed  Google Scholar 

  3. Wu G, Weiter JJ, Santos S, Ginsburg L, Villalobos R. The macular photostress test in diabetic retinopathy and age-related macular degeneration. Arch Ophthalmol. 1990;108(11):1556–8. https://doi.org/10.1001/archopht.1990.01070130058030.

    Article  CAS  PubMed  Google Scholar 

  4. Liu G, Volpe NJ, Galetta SL. The neuro-ophthalmic examination. In: Liu G, Volpe NJ, Galetta SL, editors. Liu, Volpe, and Galetta’s neuro-ophthalmology diagnosis and management. Edinburgh: Elsevier; 2018. p. 7–36.

    Google Scholar 

  5. Kelly LP, Garza PS, Bruce BB, Graubart EB, Newman NJ, Biousse V. Teaching ophthalmoscopy to medical students (the TOTeMS study). Am J Ophthalmol. 2013;156(5):1056–61.e10. https://doi.org/10.1016/j.ajo.2013.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mackay DD, Garza PS, Bruce BB, Newman NJ, Biousse V. The demise of direct ophthalmoscopy: a modern clinical challenge. Neurol Clin Pract. 2015;5(2):150–7. https://doi.org/10.1212/cpj.0000000000000115.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2(1–2):9–25. https://doi.org/10.1038/sj.neo.7900071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cukras C, Huynh N, Vitale S, Wong WT, Ferris FL 3rd, Sieving PA. Subjective and objective screening tests for hydroxychloroquine toxicity. Ophthalmology. 2015;122(2):356–66. https://doi.org/10.1016/j.ophtha.2014.07.056.

    Article  PubMed  Google Scholar 

  9. Joseph A, Rahimy E, Freund KB, Sorenson JA, Sarraf D. Fundus autofluorescence and photoreceptor bleaching in multiple evanescent white dot syndrome. Ophthalmic Surg Lasers Imaging Retina. 2013;44(6):588–92. https://doi.org/10.3928/23258160-20131105-08.

    Article  PubMed  Google Scholar 

  10. Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138(1):55–63. https://doi.org/10.1016/j.ajo.2004.02.056.

    Article  PubMed  Google Scholar 

  11. Miyake Y, Shinoda K. Clinical electrophysiology. In: Schachat AP, Sadda SR, Hinton DR, Wilkinson CP, Wiedemann P, editors. Ryan’s retina. 6th ed. Amsterdam, Netherland: Elsevier; 2018. p. 249–72.

    Google Scholar 

  12. Young B, Eggenberger E, Kaufman D. Current electrophysiology in ophthalmology: a review. Curr Opin Ophthalmol. 2012;23(6):497–505. https://doi.org/10.1097/ICU.0b013e328359045e.

    Article  PubMed  Google Scholar 

  13. Georgiou M, Kalitzeos A, Patterson EJ, Dubra A, Carroll J, Michaelides M. Adaptive optics imaging of inherited retinal diseases. Br J Ophthalmol. 2018;102(8):1028–35. https://doi.org/10.1136/bjophthalmol-2017-311328Review article briefly describes adaptive optics retinal imaging. The article describes adaptive optics retinal imaging findings along with multimodal ophthalmic imaging in inherited retinal diseases with correlation to the pathophysiology.

    Article  PubMed  Google Scholar 

  14. Prunte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol. 1996;121(1):26–34. https://doi.org/10.1016/s0002-9394(14)70531-8.

    Article  CAS  PubMed  Google Scholar 

  15. Liew G, Quin G, Gillies M, Fraser-Bell S. Central serous chorioretinopathy: a review of epidemiology and pathophysiology. Clin Exp Ophthalmol. 2013;41(2):201–14. https://doi.org/10.1111/j.1442-9071.2012.02848.x.

    Article  PubMed  Google Scholar 

  16. Yannuzzi LA. Type A behavior and central serous chorioretinopathy. Trans Am Ophthalmol Soc. 1986;84:799–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Carvalho-Recchia CA, Yannuzzi LA, Negrao S, Spaide RF, Freund KB, Rodriguez-Coleman H, et al. Corticosteroids and central serous chorioretinopathy. Ophthalmology. 2002;109(10):1834–7. https://doi.org/10.1016/s0161-6420(02)01117-x.

    Article  PubMed  Google Scholar 

  18. Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S. Risk factors for central serous chorioretinopathy: a case-control study. Ophthalmology. 2004;111(2):244–9. https://doi.org/10.1016/j.ophtha.2003.09.024.

    Article  PubMed  Google Scholar 

  19. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469–73. https://doi.org/10.1097/IAE.0b013e3181be0a83.

    Article  PubMed  Google Scholar 

  20. Suwal B, Khadka D, Shrestha A, Shrestha S, Shrestha N, Khatri B. Baseline predictive factors of visual outcome and persistence of subretinal fluid based on morphologic changes in spectral domain optical coherence tomography in patients with idiopathic central serous chorioretinopathy. Clin Ophthalmol. 2019;13:2439–44. https://doi.org/10.2147/opth.S233273.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park YJ, Kim YK, Park KH, Woo SJ. Long-term efficacy and safety of photodynamic therapy in patients with chronic central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina. 2019;50(12):760–70. https://doi.org/10.3928/23258160-20191119-03.

    Article  PubMed  Google Scholar 

  22. Scholz P, Altay L, Fauser S. Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond). 2016;30(10):1371–7. https://doi.org/10.1038/eye.2016.142.

    Article  CAS  Google Scholar 

  23. Brown GC, Magargal LE. Central retinal artery obstruction and visual acuity. Ophthalmology. 1982;89(1):14–9. https://doi.org/10.1016/s0161-6420(82)34853-8.

    Article  CAS  PubMed  Google Scholar 

  24. Bertram B, Remky A, Arend O, Wolf S, Reim M. Protein C, protein S, and antithrombin III in acute ocular occlusive diseases. Ger J Ophthalmol. 1995;4(6):332–5.

    CAS  PubMed  Google Scholar 

  25. Hayreh SS, Zimmerman MB. Central retinal artery occlusion: visual outcome. Am J Ophthalmol. 2005;140(3):376–91. https://doi.org/10.1016/j.ajo.2005.03.038.

    Article  PubMed  Google Scholar 

  26. Hayreh SS, Zimmerman MB. Fundus changes in central retinal artery occlusion. Retina. 2007;27(3):276–89. https://doi.org/10.1097/01.iae.0000238095.97104.9b.

    Article  PubMed  Google Scholar 

  27. Ros MA, Magargal LE, Uram M. Branch retinal-artery obstruction: a review of 201 eyes. Ann Ophthalmol. 1989;21(3):103–7.

    CAS  PubMed  Google Scholar 

  28. Furashova O, Matthé E. Retinal changes in different grades of retinal artery occlusion: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2017;58(12):5209–16. https://doi.org/10.1167/iovs.17-22411Article objectively compares layer by layer OCT thickness and reflectivity changes between severity grades of acute retinal artery occlusion.

    Article  PubMed  Google Scholar 

  29. Chen SN, Hwang JF, Chen YT. Macular thickness measurements in central retinal artery occlusion by optical coherence tomography. Retina. 2011;31(4):730–7. https://doi.org/10.1097/IAE.0b013e3181f2a15c.

    Article  PubMed  Google Scholar 

  30. David NJ, Norton EW, Gass JD, Beauchamp J. Fluorescein angiography in central retinal artery occlusion. Arch Ophthalmol. 1967;77(5):619–29. https://doi.org/10.1001/archopht.1967.00980020621010.

    Article  CAS  PubMed  Google Scholar 

  31. Henkes HE. Electroretinography in circulatory disturbances of the retina. II. The electroretinogram in cases of occlusion of the central retinal artery or of its branches. AMA Arch Ophthalmol. 1954;51(1):42–53. https://doi.org/10.1001/archopht.1954.00920040044006.

    Article  CAS  PubMed  Google Scholar 

  32. Biousse V, Nahab F, Newman NJ. Management of Acute Retinal Ischemia: follow the guidelines! Ophthalmology. 2018;125(10):1597–607. https://doi.org/10.1016/j.ophtha.2018.03.054Article reviews risk of stroke and acute coronary syndrome in patients with acute retinal ischemia and provides recommended urgent managements.

    Article  PubMed  Google Scholar 

  33. Park SJ, Choi NK, Yang BR, Park KH, Lee J, Jung SY, et al. Risk and risk periods for stroke and acute myocardial infarction in patients with central retinal artery occlusion. Ophthalmology. 2015;122(11):2336–43.e2. https://doi.org/10.1016/j.ophtha.2015.07.018.

    Article  PubMed  Google Scholar 

  34. Biousse V, Newman NJ. Ischemic optic neuropathies. N Engl J Med. 2015;372(25):2428–36. https://doi.org/10.1056/NEJMra1413352.

    Article  CAS  PubMed  Google Scholar 

  35. Almeida DR, Mammo Z, Chin EK, Mahajan VB. Surgical embolectomy for fovea-threatening acute retinal artery occlusion. Retin Cases Brief Rep. 2016;10(4):331–3. https://doi.org/10.1097/icb.0000000000000257.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schumacher M, Schmidt D, Jurklies B, Gall C, Wanke I, Schmoor C, et al. Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial. Ophthalmology. 2010;117(7):1367–75.e1. https://doi.org/10.1016/j.ophtha.2010.03.061.

    Article  PubMed  Google Scholar 

  37. Cebeci Z, Bayraktar S, Oray M, Kir N. Acute macular neuroretinopathy misdiagnosed as optic neuritis International. Ophthalmology. 2014;35:125–9.

    Google Scholar 

  38. Turbeville SD, Cowan LD, Gass JD. Acute macular neuroretinopathy: a review of the literature. Surv Ophthalmol. 2003;48(1):1–11. https://doi.org/10.1016/s0039-6257(02)00398-3.

    Article  PubMed  Google Scholar 

  39. Maschi C, Schneider-Lise B, Paoli V, Gastaud P. Acute macular neuroretinopathy: contribution of spectral-domain optical coherence tomography and multifocal ERG. Graefes Arch Clin Exp Ophthalmol. 2011;249(6):827–31. https://doi.org/10.1007/s00417-010-1560-1.

    Article  PubMed  Google Scholar 

  40. Gass JDM. Acute zonal occult outer retinopathy. Donders lecture: the Netherlands ophthalmological society, Maastricht, Holland, June 19, 1992. J Neuroophthalmol. 1993;13(2):79–97.

    CAS  Google Scholar 

  41. Gass JD. Overlap among acute idiopathic blind spot enlargement syndrome and other conditions. Arch Ophthalmol. 2001;119(11):1729–31. https://doi.org/10.1001/archopht.119.11.1729.

    Article  CAS  PubMed  Google Scholar 

  42. Volpe NJ, Rizzo JF 3rd, Lessell S. Acute idiopathic blind spot enlargement syndrome: a review of 27 new cases. Arch Ophthalmol. 2001;119(1):59–63.

    CAS  PubMed  Google Scholar 

  43. Watzke RC, Shults WT. Clinical features and natural history of the acute idiopathic enlarged blind spot syndrome. Ophthalmology. 2002;109(7):1326–35. https://doi.org/10.1016/s0161-6420(02)01066-7.

    Article  PubMed  Google Scholar 

  44. Fletcher WA, Imes RK, Goodman D, Hoyt WF. Acute idiopathic blind spot enlargement. A big blind spot syndrome without optic disc edema. Arch Ophthalmol. 1988;106(1):44–9. https://doi.org/10.1001/archopht.1988.01060130050026.

    Article  CAS  PubMed  Google Scholar 

  45. Callanan D, Gass JD. Multifocal choroiditis and choroidal neovascularization associated with the multiple evanescent white dot and acute idiopathic blind spot enlargement syndrome. Ophthalmology. 1992;99(11):1678–85. https://doi.org/10.1016/s0161-6420(92)31755-5.

    Article  CAS  PubMed  Google Scholar 

  46. Tamhankar MA. Visual loss: retinal disorders of neuro-ophthalmic interest. In: Liu G, Volpe NJ, Galetta SL, editors. Liu, Volpe, and Galetta’s neuro-ophthalmology diagnosis and management. 3rd ed. Edinburgh: Elsevier; 2018. p. 53–99.

    Google Scholar 

  47. Kondo N, Kondo M, Miyake Y. Acute idiopathic blind spot enlargement syndrome: prolonged retinal dysfunction revealed by multifocal electroretinogram technique. Am J Ophthalmol. 2001;132(1):126–8. https://doi.org/10.1016/s0002-9394(00)00932-6.

    Article  CAS  PubMed  Google Scholar 

  48. Jampol LM, Sieving PA, Pugh D, Fishman GA, Gilbert H. Multiple evanescent white dot syndrome I. Clinical findings. Arch Ophthalmol. 1984;102(5):671–4. https://doi.org/10.1001/archopht.1984.01040030527008.

    Article  CAS  PubMed  Google Scholar 

  49. Dodwell DG, Jampol LM, Rosenberg M, Berman A, Zaret CR. Optic nerve involvement associated with the multiple evanescent white-dot syndrome. Ophthalmology. 1990;97(7):862–8. https://doi.org/10.1016/s0161-6420(90)32489-2.

    Article  CAS  PubMed  Google Scholar 

  50. Quillen DA, Davis JB, Gottlieb JL, Blodi BA, Callanan DG, Chang TS, et al. The white dot syndromes. Am J Ophthalmol. 2004;137(3):538–50. https://doi.org/10.1016/j.ajo.2004.01.053.

    Article  PubMed  Google Scholar 

  51. Gross NE, Yannuzzi LA, Freund KB, Spaide RF, Amato GP, Sigal R. Multiple evanescent white dot syndrome. Arch Ophthalmol. 2006;124(4):493–500. https://doi.org/10.1001/archopht.124.4.493.

    Article  PubMed  Google Scholar 

  52. Marsiglia M, Gallego-Pinazo R, Cunha de Souza E, Munk MR, Yu S, Mrejen S, et al. Expanded clinical spectrum of multiple evanescent white dot syndrome with multimodal imaging. Retina. 2016;36(1):64–74. https://doi.org/10.1097/iae.0000000000000685.

    Article  PubMed  Google Scholar 

  53. Sieving PA, Fishman GA, Jampol LM, Pugh D. Multiple evanescent white dot syndrome: II. Electrophysiology of the photoreceptors during retinal pigment epithelial disease. Arch Ophthalmol. 1984;102(5):675–9. https://doi.org/10.1001/archopht.1984.01040030531009.

    Article  CAS  PubMed  Google Scholar 

  54. Russell JF, Pichi F, Scott NL, Hartley MJ, Bell D, Agarwal A, et al. Masqueraders of multiple evanescent white dot syndrome (MEWDS). Int Ophthalmol. 2020;40(3):627–38. https://doi.org/10.1007/s10792-019-01223-4Article reports cases with the typical presentation of MEWDS. However, suspicious clinical findings lead to an investigation which revealed alternative diagnosis masquerading as MEWDS.

    Article  PubMed  Google Scholar 

  55. Gass JD, Agarwal A, Scott IU. Acute zonal occult outer retinopathy: a long-term follow-up study. Am J Ophthalmol. 2002;134(3):329–39. https://doi.org/10.1016/s0002-9394(02)01640-9.

    Article  PubMed  Google Scholar 

  56. Monson DM, Smith JR. Acute zonal occult outer retinopathy. Surv Ophthalmol. 2011;56(1):23–35. https://doi.org/10.1016/j.survophthal.2010.07.004.

    Article  PubMed  Google Scholar 

  57. Mrejen S, Khan S, Gallego-Pinazo R, Jampol LM, Yannuzzi LA. Acute zonal occult outer retinopathy: a classification based on multimodal imaging. JAMA Ophthalmol. 2014;132(9):1089–98. https://doi.org/10.1001/jamaophthalmol.2014.1683.

    Article  PubMed  Google Scholar 

  58. Fujiwara T, Imamura Y, Giovinazzo VJ, Spaide RF. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy. Retina. 2010;30(8):1206–16. https://doi.org/10.1097/IAE.0b013e3181e097f0.

    Article  PubMed  Google Scholar 

  59. Sawyer RA, Selhorst JB, Zimmerman LE, Hoyt WF. Blindness caused by photoreceptor degeneration as a remote effect of cancer. Am J Ophthalmol. 1976;81(5):606–13. https://doi.org/10.1016/0002-9394(76)90125-2.

    Article  CAS  PubMed  Google Scholar 

  60. Thirkill CE, Roth AM, Keltner JL. Cancer-associated retinopathy. Arch Ophthalmol. 1987;105:372–5.

    Article  CAS  Google Scholar 

  61. Weleber RG, Watzke RC, Shults WT, Trzupek KM, Heckenlively JR, Egan RA, et al. Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. Am J Ophthalmol. 2005;139(5):780–94. https://doi.org/10.1016/j.ajo.2004.12.104.

    Article  CAS  PubMed  Google Scholar 

  62. Ueno S, Ito Y, Maruko R, Kondo M, Terasaki H. Choroidal atrophy in a patient with paraneoplastic retinopathy and anti-TRPM1 antibody. Clin Ophthalmol. 2014;8:369–73. https://doi.org/10.2147/opth.S55124.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adamus G. Autoantibody targets and their cancer relationship in the pathogenicity of paraneoplastic retinopathy. Autoimmun Rev. 2009;8(5):410–4. https://doi.org/10.1016/j.autrev.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chan JW. Paraneoplastic retinopathies and optic neuropathies. Surv Ophthalmol. 2003;48(1):12–38. https://doi.org/10.1016/s0039-6257(02)00416-2.

    Article  PubMed  Google Scholar 

  65. Ohguro H, Yokoi Y, Ohguro I, Mamiya K, Ishikawa F, Yamazaki H, et al. Clinical and immunologic aspects of cancer-associated retinopathy. Am J Ophthalmol. 2004;137(6):1117–9. https://doi.org/10.1016/j.ajo.2004.01.010.

    Article  PubMed  Google Scholar 

  66. Lima LH, Greenberg JP, Greenstein VC, Smith RT, Sallum JM, Thirkill C, et al. Hyperautofluorescent ring in autoimmune retinopathy. Retina. 2012;32(7):1385–94. https://doi.org/10.1097/IAE.0b013e3182398107.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dy I, Chintapatla R, Preeshagul I, Becker D. Treatment of cancer-associated retinopathy with rituximab. J Natl Compr Cancer Netw. 2013;11(11):1320–4. https://doi.org/10.6004/jnccn.2013.0156.

    Article  CAS  Google Scholar 

  68. Ferreyra HA, Jayasundera T, Khan NW, He S, Lu Y, Heckenlively JR. Management of autoimmune retinopathies with immunosuppression. Arch Ophthalmol. 2009;127(4):390–7. https://doi.org/10.1001/archophthalmol.2009.24.

    Article  CAS  PubMed  Google Scholar 

  69. Adamus G, Champaigne R, Yang S. Occurrence of major anti-retinal autoantibodies associated with paraneoplastic autoimmune retinopathy. Clin Immunol. 2020;210:108317. https://doi.org/10.1016/j.clim.2019.108317A large study describes association of major anti-retinal autoantibodies with ocular symptoms and correlation of autoantibodies with type of tumors in CAR.

    Article  CAS  PubMed  Google Scholar 

  70. Potter MJ, Thirkill CE, Dam OM, Lee AS, Milam AH. Clinical and immunocytochemical findings in a case of melanoma-associated retinopathy. Ophthalmology. 1999;106(11):2121–5. https://doi.org/10.1016/s0161-6420(99)90493-1.

    Article  CAS  PubMed  Google Scholar 

  71. Lu Y, Jia L, He S, Hurley MC, Leys MJ, Jayasundera T, et al. Melanoma-associated retinopathy: a paraneoplastic autoimmune complication. Arch Ophthalmol. 2009;127(12):1572–80. https://doi.org/10.1001/archophthalmol.2009.311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1998;83(8):1664–78. https://doi.org/10.1002/(sici)1097-0142(19981015)83:8<1664::aid-cncr23>3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  73. Keltner JL, Thirkill CE, Yip PT. Clinical and immunologic characteristics of melanoma-associated retinopathy syndrome: eleven new cases and a review of 51 previously published cases. J Neuroophthalmol. 2001;21(3):173–87. https://doi.org/10.1097/00041327-200109000-00004.

    Article  CAS  PubMed  Google Scholar 

  74. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–58. https://doi.org/10.1016/j.survophthal.2006.02.007.

    Article  PubMed  Google Scholar 

  75. Lima LH, Sallum JM, Spaide RF. Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients. Retina. 2013;33(9):1877–80. https://doi.org/10.1097/IAE.0b013e31829234e6.

    Article  PubMed  Google Scholar 

  76. Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007;2:7. https://doi.org/10.1186/1750-1172-2-7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–50. https://doi.org/10.1136/jmg.40.9.641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101(1):25–30. https://doi.org/10.1136/bjophthalmol-2016-308823.

    Article  PubMed  Google Scholar 

  79. Lambertus S, van Huet RA, Bax NM, Hoefsloot LH, Cremers FP, Boon CJ, et al. Early-onset stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 2015;122(2):335–44. https://doi.org/10.1016/j.ophtha.2014.08.032.

    Article  PubMed  Google Scholar 

  80. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol. 2001;119(3):359–69. https://doi.org/10.1001/archopht.119.3.359.

    Article  CAS  PubMed  Google Scholar 

  81. Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. Recommendations on screening for Chloroquine and Hydroxychloroquine retinopathy (2016 revision). Ophthalmology. 2016;123(6):1386–94. https://doi.org/10.1016/j.ophtha.2016.01.058Article update on important risk factors and practical recommendations on screening for chloroquine and hydroxychloroquine retinopathy.

    Article  PubMed  Google Scholar 

  82. Marmor MF, Hu J. Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol. 2014;132(9):1105–12. https://doi.org/10.1001/jamaophthalmol.2014.1099.

    Article  PubMed  Google Scholar 

  83. Maguire MJ, Hemming K, Wild JM, Hutton JL, Marson AG. Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia. 2010;51(12):2423–31. https://doi.org/10.1111/j.1528-1167.2010.02772.x.

    Article  PubMed  Google Scholar 

  84. Sergott RC, Wheless JW, Smith MC, Westall CA, Kardon RH, Arnold A, et al. Evidence-based review of recommendations for visual function testing in patients treated with vigabatrin. Neuro-Ophthalmology. 2010;34(1):20–35. https://doi.org/10.3109/01658100903582498.

    Article  Google Scholar 

  85. Harding GFA, Robertson K, Spencer EL, Holliday I. Vigabatrin; its effect on the electrophysiology of vision. Doc Ophthalmol. 2002;104(2):213–29. https://doi.org/10.1023/a:1014643528474.

    Article  CAS  PubMed  Google Scholar 

  86. Hanif AM, Armenti ST, Taylor SC, Shah RA, Igelman AD, Jayasundera KT, et al. Phenotypic spectrum of pentosan polysulfate sodium-associated maculopathy: a multicenter study. JAMA Ophthalmol. 2019;137(11):1275–82. https://doi.org/10.1001/jamaophthalmol.2019.3392A large multicenter study described the clinical spectrum and multimodal imaging findings of pentosan polysulfate sodium-associated maculopathy.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Tharikarn Sujirakul, MD., Wimwipa Dieosuthichat,MD., Atit Koovisitsopit, MD. for contributing clinical images.

Funding

Unrestricted grant from Research to Prevent Blindness, NIH P30 026877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather E. Moss.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Ophthalmology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padungkiatsagul, T., Leung, LS. & Moss, H.E. Retinal Diseases that Can Masquerade as Neurological Causes of Vision Loss. Curr Neurol Neurosci Rep 20, 51 (2020). https://doi.org/10.1007/s11910-020-01071-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01071-1

Keywords

Navigation