Skip to main content

Advertisement

Log in

Frailty and HIV: Moving from Characterization to Intervention

  • Complications of HIV and Antiretroviral Therapy (GA McComsey, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH).

Recent Findings

Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV.

Summary

Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention: HIV and older Americans. https://www.cdc.gov/hiv/group/age/olderamericans/index.html Accessed 12/15/2020 2020.

  2. •• Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039This article delineates 9 primary pillars or hallmarks of aging processes across species that precipitate loss of physiological integrity, impaired function, and increased vulnerability to death. These pathways have been considered key targets for putative pharmacologic interventions to improve human health across the lifespan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, et al. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci. 2007;62(11):1279–86.

    Article  PubMed  Google Scholar 

  4. Althoff KN, Jacobson LP, Cranston RD, Detels R, Phair JP, Li X, et al. Age, comorbidities, and AIDS predict a frailty phenotype in men who have sex with men. J Gerontol A Biol Sci Med Sci. 2013;69A:189–98. https://doi.org/10.1093/gerona/glt148.

    Article  PubMed Central  Google Scholar 

  5. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.

    Article  CAS  PubMed  Google Scholar 

  6. Aguirre LE, Villareal DT. Physical exercise as therapy for frailty. Nestle Nutr Inst Workshop Ser. 2015;83:83–92. https://doi.org/10.1159/000382065.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xue QL, Bandeen-Roche K, Varadhan R, Zhou J, Fried LP. Initial manifestations of frailty criteria and the development of frailty phenotype in the Women's Health and Aging Study II. J Gerontol A Biol Sci Med Sci. 2008;63(9):984–90.

    Article  PubMed  Google Scholar 

  8. Navarrete-Villanueva D, Gómez-Cabello A, Marín-Puyalto J, Moreno LA, Vicente-Rodríguez G, Casajús JA. Frailty and physical fitness in elderly people: a systematic review and meta-analysis. Sports Med. 2020;51:143–60. https://doi.org/10.1007/s40279-020-01361-1.

    Article  Google Scholar 

  9. Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: strategies to manage frailty. Redox Biol. 2020;35:101513. https://doi.org/10.1016/j.redox.2020.101513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29(1):35–42. https://doi.org/10.1007/s40520-016-0705-4.

    Article  PubMed  Google Scholar 

  11. Billot M, Calvani R, Urtamo A, Sánchez-Sánchez JL, Ciccolari-Micaldi C, Chang M, et al. Preserving mobility in older adults with physical frailty and sarcopenia: opportunities, challenges, and recommendations for physical activity interventions. Clin Interv Aging. 2020;15:1675–90. https://doi.org/10.2147/cia.S253535.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lopez P, Pinto RS, Radaelli R, Rech A, Grazioli R, Izquierdo M, et al. Benefits of resistance training in physically frail elderly: a systematic review. Aging Clin Exp Res. 2018;30(8):889–99. https://doi.org/10.1007/s40520-017-0863-z.

    Article  PubMed  Google Scholar 

  13. Department of Health and Human Services. Physical activity guidelines for Americans, 2nd edition. Washington, DC: US Department of Health and Human Services 2018; https://health.gov/paguidelines/second-edition/pdf/Physical_Activity_Guidelines_2nd_edition.pdf. Accessed 1/14/2020. .

  14. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization. 2020. 11/25/2020. Last accessed 12/6/2020. https://www.who.int/publications/i/item/9789240015128.

  15. Pahor M, Guralnik JM, Ambrosius WT, Blair S, Bonds DE, Church TS, et al. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. Jama. 2014;311(23):2387–96. https://doi.org/10.1001/jama.2014.5616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Hsu FC, Trombetti A, King AC, Liu CK, Manini TM, et al. Effect of 24-month physical activity on cognitive frailty and the role of inflammation: the LIFE randomized clinical trial. BMC Med. 2018;16(1):185. https://doi.org/10.1186/s12916-018-1174-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cesari M, Vellas B, Hsu FC, Newman AB, Doss H, King AC, et al. A physical activity intervention to treat the frailty syndrome in older persons-results from the LIFE-P study. J Gerontol A Biol Sci Med Sci. 2015;70(2):216–22. https://doi.org/10.1093/gerona/glu099.

    Article  PubMed  Google Scholar 

  18. Fielding RA, Guralnik JM, King AC, Pahor M, McDermott MM, Tudor-Locke C, et al. Dose of physical activity, physical functioning and disability risk in mobility-limited older adults: results from the LIFE study randomized trial. PLoS One. 2017;12(8):e0182155. https://doi.org/10.1371/journal.pone.0182155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomes Neto M, Conceicao CS, Oliveira Carvalho V, Brites C. Effects of combined aerobic and resistance exercise on exercise capacity, muscle srength and quality of life in HIV-infected patients: a systematic review and meta-analysis. PLoS One. 2015;10(9):e0138066. https://doi.org/10.1371/journal.pone.0138066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien KK, Tynan AM, Nixon SA, Glazier RH. Effectiveness of aerobic exercise for adults living with HIV: systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infect Dis. 2016;16:182. https://doi.org/10.1186/s12879-016-1478-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O'Brien KK, Tynan AM, Nixon SA, Glazier RH. Effectiveness of progressive resistive exercise (PRE) in the context of HIV: systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infect Dis. 2017;17(1):268. https://doi.org/10.1186/s12879-017-2342-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Erlandson KM, MaWhinney S, Wilson M, Gross L, McCandless SA, Campbell TB, et al. Physical function improvements with moderate or high-intensity exercise among older adults with or without HIV infection. AIDS. 2018;32(16):2317–26. https://doi.org/10.1097/QAD.0000000000001984This interventional study compares two doses of exercises in people with and without HIV, providing some of the first data on the effect of exercise on frailty.

    Article  PubMed  Google Scholar 

  23. Stabell AC, Wilson M, Jankowski CM, MaWhinney S, Erlandson KM. The impact of a structured, supervised exercise program on daily step count in sedentary older adults with and without HIV. J Acquir Immune Defic Syndr. 2020;84(2):228–33. https://doi.org/10.1097/QAI.0000000000002326.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Souza PM, Jacob-Filho W, Santarem JM, Zomignan AA, Burattini MN. Effect of progressive resistance exercise on strength evolution of elderly patients living with HIV compared to healthy controls. Clinics (Sao Paulo). 2011;66(2):261–6.

    Article  Google Scholar 

  25. Brown D, Claffey A, Harding R. Evaluation of a physiotherapy-led group rehabilitation intervention for adults living with HIV: referrals, adherence and outcomes. AIDS Care. 2016;28(12):1495–505. https://doi.org/10.1080/09540121.2016.1191611.

    Article  PubMed  Google Scholar 

  26. Briggs BC, Ryan AS, Sorkin JD, Oursler KK. Feasibility and effects of high-intensity interval training in older adults living with HIV. J Sports Sci. 2020;39:1–8. https://doi.org/10.1080/02640414.2020.1818949.

    Article  Google Scholar 

  27. Shah KN, Majeed Z, Yoruk YB, Yang H, Hilton TN, McMahon JM, et al. Enhancing physical function in HIV-infected older adults: a randomized controlled clinical trial. Health Psychol. 2016;35(6):563–73. https://doi.org/10.1037/hea0000311.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Montoya JL, Jankowski CM, O'Brien KK, Webel AR, Oursler KK, Henry BL, et al. Evidence-informed practical recommendations for increasing physical activity among persons living with HIV. AIDS. 2019;33(6):931–9. https://doi.org/10.1097/QAD.0000000000002137Although little is known about the effects of exercise or physical activity on frailty in people with HIV, this comprehensive review presents the existing data on various components of health in people with HIV.

    Article  PubMed  Google Scholar 

  29. O'Brien KK, Bayoumi AM, Solomon P, Tang A, Murzin K, Chan Carusone S, et al. Evaluating a community-based exercise intervention with adults living with HIV: protocol for an interrupted time series study. BMJ Open. 2016;6(10):e013618. https://doi.org/10.1136/bmjopen-2016-013618.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Webel AR, Perazzo J, Decker M, Horvat-Davey C, Sattar A, Voss J. Physical activity is associated with reduced fatigue in adults living with HIV/AIDS. J Adv Nurs. 2016;72(12):3104–12. https://doi.org/10.1111/jan.13084.

    Article  PubMed  PubMed Central  Google Scholar 

  31. dos Santos IK, de Azevedo KPM, Silveira APKF, Leitão JC, Bento T, da Dantas PM, et al. Physical activity and sleep of persons living with HIV/AIDS: a systematic review. Revista Andaluza de Medicina del Deporte. 2017;10(1):19–24. https://doi.org/10.1016/j.ramd.2016.08.001.

    Article  Google Scholar 

  32. Hixon B, Burgess HJ, Wilson MP, MaWhinney S, Jankowski CM, Erlandson KM. A supervised exercise intervention fails to improve subjective and objective sleep measures among older adults with and without HIV. HIV Res Clin Pract. 2020;21:1–9. https://doi.org/10.1080/25787489.2020.1839708.

    Article  Google Scholar 

  33. Lozano-Montoya I, Correa-Pérez A, Abraha I, Soiza RL, Cherubini A, O'Mahony D, et al. Nonpharmacological interventions to treat physical frailty and sarcopenia in older patients: a systematic overview—the SENATOR Project ONTOP Series. Clin Interv Aging. 2017;12:721–40. https://doi.org/10.2147/cia.S132496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dedeyne L, Deschodt M, Verschueren S, Tournoy J, Gielen E. Effects of multi-domain interventions in (pre)frail elderly on frailty, functional, and cognitive status: a systematic review. Clin Interv Aging. 2017;12:873–96. https://doi.org/10.2147/cia.S130794.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364(13):1218–29. https://doi.org/10.1056/NEJMoa1008234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mankal PK, Kotler DP. From wasting to obesity, changes in nutritional concerns in HIV/AIDS. Endocrinol Metab Clin N Am. 2014;43(3):647–63. https://doi.org/10.1016/j.ecl.2014.05.004.

    Article  Google Scholar 

  37. Arey BD, Beal MW. The role of exercise in the prevention and treatment of wasting in acquired immune deficiency syndrome. The Journal of the Association of Nurses in AIDS Care : JANAC. 2002;13(1):29–49. https://doi.org/10.1016/s1055-3290(06)60239-2.

    Article  PubMed  Google Scholar 

  38. Fernandes SG, Rodrigues AM, Nunes C, Santos O, Gregório MJ, de Sousa RD, et al. Food insecurity in older adults: results from the Epidemiology of Chronic Diseases Cohort Study 3. Front Med (Lausanne). 2018;5:203. https://doi.org/10.3389/fmed.2018.00203.

    Article  Google Scholar 

  39. Smit E, Wanke C, Dong K, Grotheer A, Hansen S, Skinner S, et al. Frailty, food insecurity, and nutritional status in people living with HIV. J Frailty Aging. 2015;4(4):191–7. https://doi.org/10.14283/jfa.2015.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Filteau S, PrayGod G, Woodd SL, Friis H, Heimburger DC, Koethe JR, et al. Nutritional status is the major factor affecting grip strength of African HIV patients before and during antiretroviral treatment. Tropical medicine & international health : TM & IH. 2017;22(10):1302–13. https://doi.org/10.1111/tmi.12929.

    Article  CAS  Google Scholar 

  41. Pérez-Zepeda MU, Castrejón-Pérez RC, Wynne-Bannister E, García-Peña C. Frailty and food insecurity in older adults. Public Health Nutr. 2016;19(15):2844–9. https://doi.org/10.1017/s1368980016000987.

    Article  PubMed  Google Scholar 

  42. Bekele T, Globerman J, Watson J, Jose-Boebridge M, Kennedy R, Hambly K, et al. Prevalence and predictors of food insecurity among people living with HIV affiliated with AIDS service organizations in Ontario. Canada AIDS Care. 2018;30(5):663–71. https://doi.org/10.1080/09540121.2017.1394435.

    Article  PubMed  Google Scholar 

  43. • Willig A, Wright L, Galvin TA. Practice paper of the Academy of Nutrition and Dietetics: nutrition intervention and human immunodeficiency virus infection. J Acad Nutr Diet. 2018;118(3):486–98. https://doi.org/10.1016/j.jand.2017.12.007As nutrition is an important component of frailty, this article reviews current recommendation on nutrition recommendations for people with HIV.

    Article  PubMed  Google Scholar 

  44. • Lake JE, Stanley TL, Apovian CM, Bhasin S, Brown TT, Capeau J, et al. Practical review of recognition and management of obesity and lipohypertrophy in human immunodeficiency virus infection. Clin Infect Dis. 2017;64(10):1422–9. https://doi.org/10.1093/cid/cix178People aging with HIV may still experience lipohypertrophy and are now experiencing an increasing prevalence of obesity. This paper reviews what is currently known and provides practical management tips.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lake JE. The fat of the matter: obesity and visceral adiposity in treated HIV infection. Curr HIV/AIDS Rep. 2017;14(6):211–9. https://doi.org/10.1007/s11904-017-0368-6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Umbleja T, Brown TT, Overton ET, Ribaudo HJ, Schrack JA, Fitch KV, et al. Physical function impairment and frailty in middle-aged people living with human immunodeficiency virus in the REPRIEVE Trial Ancillary Study PREPARE. J Infect Dis. 2020;222(Supplement_1):S52–62. https://doi.org/10.1093/infdis/jiaa249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hawkins KL, Zhang L, Ng DK, Althoff KN, Palella FJ Jr, Kingsley LA, et al. Abdominal obesity, sarcopenia, and osteoporosis are associated with frailty in men living with and without HIV. AIDS. 2018;32(10):1257–66. https://doi.org/10.1097/QAD.0000000000001829.

    Article  PubMed  Google Scholar 

  48. Erlandson KM, Wu K, Koletar SL, Kalayjian RC, Ellis RJ, Taiwo B, et al. Association between frailty and components of the frailty phenotype with modifiable risk factors and antiretroviral therapy. J Infect Dis. 2017;215(6):933–7. https://doi.org/10.1093/infdis/jix063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Becofsky K, Wing EJ, McCaffery J, Boudreau M, Wing RR. A randomized controlled trial of a behavioral weight loss program for human immunodeficiency virus-infected patients. Clin Infect Dis. 2017;65(1):154–7. https://doi.org/10.1093/cid/cix238.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jankowski CM, Mawhinney S, Wilson MP, Campbell TB, Kohrt WM, Schwartz RS, et al. Body composition changes in response to moderate- or high-intensity exercise among older adults with or without HIV infection. J Acquir Immune Defic Syndr. 2020;85(3):340–5. https://doi.org/10.1097/QAI.0000000000002443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255–63.

    Article  PubMed  Google Scholar 

  52. Maher D, Ailabouni N, Mangoni AA, Wiese MD, Reeve E. Alterations in drug disposition in older adults: a focus on geriatric syndromes. Expert Opin Drug Metab Toxicol. 2020;17:1–12. https://doi.org/10.1080/17425255.2021.1839413.

    Article  CAS  Google Scholar 

  53. Bennett A, Gnjidic D, Gillett M, Carroll P, Matthews S, Johnell K, et al. Prevalence and impact of fall-risk-increasing drugs, polypharmacy, and drug–drug interactions in robust versus frail hospitalised falls patients: a prospective cohort study. Drugs Aging. 2014;31(3):225–32. https://doi.org/10.1007/s40266-013-0151-3.

    Article  PubMed  Google Scholar 

  54. Nwadiugwu MC. Frailty and the risk of polypharmacy in the older person: enabling and preventative approaches. Journal of aging research. 2020;2020:6759521–6. https://doi.org/10.1155/2020/6759521.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Soler O, Barreto JOM. Community-level pharmaceutical interventions to reduce the risks of polypharmacy in the elderly: overview of systematic reviews and economic evaluations. Front Pharmacol. 2019;10:302. https://doi.org/10.3389/fphar.2019.00302.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shrestha S, Poudel A, Steadman K, Nissen L. Outcomes of deprescribing interventions in older patients with life-limiting illness and limited life expectancy: a systematic review. Br J Clin Pharmacol. 2020;86(10):1931–45. https://doi.org/10.1111/bcp.14113.

    Article  PubMed  Google Scholar 

  57. Cooper JA, Cadogan CA, Patterson SM, Kerse N, Bradley MC, Ryan C, et al. Interventions to improve the appropriate use of polypharmacy in older people: a Cochrane systematic review. BMJ Open. 2015;5(12):e009235. https://doi.org/10.1136/bmjopen-2015-009235.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Park CM, Oh G, Lee H, Jung HW, Lee E, Jang IY, et al. Multicomponent intervention and long-term disability in older adults: a nonrandomized prospective study. J Am Geriatr Soc. 2020;69:669–77. https://doi.org/10.1111/jgs.16926.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Romera-Liebana L, Orfila F, Segura JM, Real J, Fabra ML, Möller M, et al. Effects of a primary care-based multifactorial intervention on physical and cognitive function in frail, elderly individuals: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2018;73(12):1688–74. https://doi.org/10.1093/gerona/glx259.

    Article  PubMed  Google Scholar 

  60. Sung M, Gordon K, Edelman EJ, Akgün KM, Oursler KK, Justice AC. Polypharmacy and frailty among persons with HIV. AIDS Care. 2020:1–8. https://doi.org/10.1080/09540121.2020.1813872.

  61. Erlandson KM, Allshouse AA, Jankowski CM, Duong S, MaWhinney S, Kohrt WM, et al. Risk factors for falls in HIV-infected persons. J Acquir Immune Defic Syndr. 2012;61(4):484–9. https://doi.org/10.1097/QAI.0b013e3182716e38.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim TW, Walley AY, Ventura AS, Patts GJ, Heeren TC, Lerner GB, et al. Polypharmacy and risk of falls and fractures for patients with HIV infection and substance dependence. AIDS Care. 2018;30(2):150–9. https://doi.org/10.1080/09540121.2017.1384532.

    Article  PubMed  Google Scholar 

  63. McNicholl IR, Gandhi M, Hare CB, Greene M, Pierluissi E. A pharmacist-led program to evaluate and reduce polypharmacy and potentially inappropriate prescribing in older HIV-positive patients. Pharmacotherapy. 2017;37(12):1498–506. https://doi.org/10.1002/phar.2043.

    Article  CAS  PubMed  Google Scholar 

  64. American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2019;67(4):674-94. https://doi.org/10.1111/jgs.15767.

  65. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 7/15/2020; Last updated 1/10/2020. .

  66. Crow RS, Lohman MC, Pidgeon D, Bruce ML, Bartels SJ, Batsis JA. Frailty versus stopping elderly accidents, deaths and injuries initiative fall risk score: ability to predict future falls. J Am Geriatr Soc. 2018;66(3):577–83. https://doi.org/10.1111/jgs.15275.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Esbrí-Víctor M, Huedo-Rodenas I, López-Utiel M, Navarro-López JL, Martínez-Reig M, Serra-Rexach JA, et al. Frailty and fear of falling: the FISTAC Study. J Frailty Aging. 2017;6(3):136–40. https://doi.org/10.14283/jfa.2017.19.

    Article  PubMed  Google Scholar 

  68. Wang X, Chen Z, Li Z, Chen B, Qi Y, Li G, et al. Association between frailty and risk of fall among diabetic patients. Endocr Connect. 2020;9(10):1057–64. https://doi.org/10.1530/ec-20-0405.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bartosch PS, Kristensson J, McGuigan FE, Akesson KE. Frailty and prediction of recurrent falls over 10 years in a community cohort of 75-year-old women. Aging Clin Exp Res. 2020;32(11):2241–50. https://doi.org/10.1007/s40520-019-01467-1.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hauer K, Rost B, Rütschle K, Opitz H, Specht N, Bärtsch P, et al. Exercise training for rehabilitation and secondary prevention of falls in geriatric patients with a history of injurious falls. J Am Geriatr Soc. 2001;49(1):10–20. https://doi.org/10.1046/j.1532-5415.2001.49004.x.

    Article  CAS  PubMed  Google Scholar 

  71. Ožić S, Vasiljev V, Ivković V, Bilajac L, Rukavina T. Interventions aimed at loneliness and fall prevention reduce frailty in elderly urban population. Medicine (Baltimore). 2020;99(8):e19145. https://doi.org/10.1097/md.0000000000019145.

    Article  Google Scholar 

  72. Sharma A, Hoover DR, Shi Q, Holman S, Plankey MW, Wheeler AL, et al. Falls among middle-aged women in the Women's Interagency HIV Study. Antivir Ther. 2016;21(8):697–706. https://doi.org/10.3851/IMP3070.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Berner K, Strijdom H, Essop MF, Webster I, Morris L, Louw Q. Fall history and associated factors among adults living with HIV-1 in the Cape Winelands, South Africa: an exploratory investigation. Open Forum Infect Dis. 2019;6(10):ofz401. https://doi.org/10.1093/ofid/ofz401.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tassiopoulos K, Abdo M, Wu K, Koletar SL, Palella FJ Jr, Kalayjian R, et al. Frailty is strongly associated with increased risk of recurrent falls among older HIV-infected adults: a prospective cohort study. Aids. 2017;31:2287–94. https://doi.org/10.1097/QAD.0000000000001613.

    Article  PubMed  Google Scholar 

  75. Sharma A, Hoover DR, Shi Q, Gustafson DR, Plankey MW, Tien PC, et al. Frailty as a predictor of falls in HIV-infected and uninfected women. Antivir Ther. 2019;24(1):51–61. https://doi.org/10.3851/IMP3286.

    Article  PubMed  Google Scholar 

  76. Erlandson KM, Zhang L, Ng DK, Althoff KN, Palella F, Kingsley L, et al. Risk factors for falls, falls with injury, and falls with fracture among older men with or at risk of HIV infection. J Acquir Immune Def Syndr. 2019.

  77. Veeravelli S, Najafi B, Marin I, Blumenkron F, Smith S, Klotz SA. Exergaming in older people living with HIV improves balance, mobility and ameliorates some aspects of frailty. Journal of visualized experiments : JoVE. 2016;116. https://doi.org/10.3791/54275.

  78. Ramirez-Garcia MP, Gagnon MP, Colson S, Côté J, Flores-Aranda J, Dupont M. Mind–body practices for people living with HIV: a systematic scoping review. BMC Complement Altern Med. 2019;19(1):125. https://doi.org/10.1186/s12906-019-2502-z.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Moore AA, Lake JE, Glasner S, Karlamangla A, Kuerbis A, Preciado D, et al. Establishing the feasibility, acceptability and preliminary efficacy of a multi-component behavioral intervention to reduce pain and substance use and improve physical performance in older persons living with HIV. J Subst Abus Treat. 2019;100:29–38. https://doi.org/10.1016/j.jsat.2019.02.003.

    Article  Google Scholar 

  80. Vaughan L, Corbin AL, Goveas JS. Depression and frailty in later life: a systematic review. Clin Interv Aging. 2015;10:1947–58. https://doi.org/10.2147/cia.S69632.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Arts MH, Collard RM, Comijs HC, Zuidersma M, de Rooij SE, Naarding P, et al. Physical frailty and cognitive functioning in depressed older adults: findings from the NESDO Study. J Am Med Dir Assoc. 2016;17(1):36–43. https://doi.org/10.1016/j.jamda.2015.07.016.

    Article  PubMed  Google Scholar 

  82. Majnarić LT, Bekić S, Babič F, Pusztová Ľ, Paralič J. Cluster analysis of the associations among physical frailty, cognitive impairment and mental disorders. Medical science monitor : international medical journal of experimental and clinical research. 2020;26:e924281. https://doi.org/10.12659/msm.924281.

    Article  Google Scholar 

  83. Erlandson KM, Perez J, Abdo M, Robertson K, Ellis RJ, Koletar SL, et al. Frailty, neurocognitive impairment, or both in predicting poor health outcomes among adults living with human immunodeficiency virus. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2019;68(1):131–8. https://doi.org/10.1093/cid/ciy430.

    Article  Google Scholar 

  84. Paul RH, Cooley SA, Garcia-Egan PM, Ances BM. Cognitive performance and frailty in older HIV-positive adults. J Acquir Immune Defic Syndr. 2018;79(3):375–80. https://doi.org/10.1097/qai.0000000000001790.

    Article  PubMed  Google Scholar 

  85. Morgello S, Gensler G, Sherman S, Ellis RJ, Gelman BB, Kolson DL, et al. Frailty in medically complex individuals with chronic HIV. Aids. 2019;33(10):1603–11. https://doi.org/10.1097/qad.0000000000002250.

    Article  CAS  PubMed  Google Scholar 

  86. Mathur S, Roberts-Toler C, Tassiopoulos K, Goodkin K, McLaughlin M, Bares S, et al. Detrimental effects of psychotropic medications differ by sex in aging people with HIV. J Acquir Immune Defic Syndr. 2019;82(1):88–95. https://doi.org/10.1097/qai.0000000000002100.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ng TP, Feng L, Nyunt MS, Feng L, Niti M, Tan BY, et al. Nutritional, physical, cognitive, and combination interventions and frailty reversal among older adults: a randomized controlled trial. Am J Med. 2015;128(11):1225–36.e1. https://doi.org/10.1016/j.amjmed.2015.06.017.

    Article  PubMed  Google Scholar 

  88. Cameron ID, Fairhall N, Langron C, Lockwood K, Monaghan N, Aggar C, et al. A multifactorial interdisciplinary intervention reduces frailty in older people: randomized trial. BMC Med. 2013;11:65. https://doi.org/10.1186/1741-7015-11-65.

    Article  PubMed  PubMed Central  Google Scholar 

  89. de Souto BP, Rolland Y, Maltais M, Vellas B. Associations of multidomain lifestyle intervention with frailty: secondary analysis of a randomized controlled trial. Am J Med. 2018;131(11):1382.e7–e13. https://doi.org/10.1016/j.amjmed.2018.06.002.

    Article  Google Scholar 

  90. •• Siegler EL, Brennan-Ing M. Adapting systems of care for people aging with HIV. The Journal of the Association of Nurses in AIDS Care : JANAC. 2017;28(5):698–707. https://doi.org/10.1016/j.jana.2017.05.006Involving a geriatrician in the care of people aging with HIV may help to maximize care and minimize progression to frailty. This review focuses on existing care models for older adults with HIV.

    Article  PubMed  Google Scholar 

  91. Levett T, Alford K, Roberts J, Adler Z, Wright J, Vera JH. Evaluation of a combined HIV and geriatrics clinic for older people living with HIV: The Silver Clinic in Brighton, UK. Geriatrics (Basel). 2020;5(4) 10.3390/geriatrics5040081.

  92. Greene M, Myers J, Tan JY, Blat C, O'Hollaren A, Quintanilla F, et al. The golden compass program: overview of the initial implementation of a comprehensive program for older adults living with HIV. Journal of the International Association of Providers of AIDS Care. 2020;19:2325958220935267. https://doi.org/10.1177/2325958220935267.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bitas C, Jones S, Singh HK, Ramirez M, Siegler E, Glesby M. Adherence to recommendations from comprehensive geriatric assessment of older individuals with HIV. Journal of the International Association of Providers of AIDS Care. 2019;18:2325958218821656. https://doi.org/10.1177/2325958218821656.

    Article  PubMed  PubMed Central  Google Scholar 

  94. O'Brien KK, Solomon P, Trentham B, MacLachlan D, MacDermid J, Tynan A-M, et al. Evidence-informed recommendations for rehabilitation with older adults living with HIV: a knowledge synthesis. BMJ Open. 2014;4(5):e004692. https://doi.org/10.1136/bmjopen-2013-004692.

    Article  PubMed  PubMed Central  Google Scholar 

  95. deBoer H, Andrews M, Cudd S, Leung E, Petrie A, Chan Carusone S, et al. Where and how does physical therapy fit? Integrating physical therapy into interprofessional HIV care. Disabil Rehabil. 2019;41(15):1768–77. https://doi.org/10.1080/09638288.2018.1448469.

    Article  PubMed  Google Scholar 

  96. •• Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, et al. The road ahead for health and lifespan interventions. Ageing Res Rev. 2020;59:101037. https://doi.org/10.1016/j.arr.2020.101037This article provides a survey of compounds selected for testing for antiaging activity in the National Institute of Aging’s Interventions Testing Program and a review of drugs in clinical trials targeting aging or age-related diseases in humans as identified in the ClinicalTrials.govdatabase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Palliyaguru DL, Moats JM, Di Germanio C, Bernier M, de Cabo R. Frailty index as a biomarker of lifespan and healthspan: focus on pharmacological interventions. Mech Ageing Dev. 2019;180:42–8. https://doi.org/10.1016/j.mad.2019.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the stress response: viral subversion of the mTOR signaling pathway. Viruses. 2016;8(6). https://doi.org/10.3390/v8060152.

  100. Bitto A, Ito TK, Pineda VV, LeTexier NJ, Huang HZ, Sutlief E, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5. https://doi.org/10.7554/eLife.16351.

  101. Antoch MP, Wrobel M, Kuropatwinski KK, Gitlin I, Leonova KI, Toshkov I, et al. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging (Albany NY). 2017;9(3):615–26. https://doi.org/10.18632/aging.101206.

    Article  CAS  Google Scholar 

  102. Akbay B, Shmakova A, Vassetzky Y, Dokudovskaya S. Modulation of mTORC1 signaling pathway by HIV-1. Cells. 2020;9(5). https://doi.org/10.3390/cells9051090.

  103. Cinti A, Le Sage V, Milev MP, Valiente-Echeverria F, Crossie C, Miron MJ, et al. HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Sci Rep. 2017;7(1):5515. https://doi.org/10.1038/s41598-017-05410-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. El-Salem M, Raghunath PN, Marzec M, Liu X, Kasprzycka M, Robertson E, et al. Activation of mTORC1 signaling pathway in AIDS-related lymphomas. Am J Pathol. 2009;175(2):817–24. https://doi.org/10.2353/ajpath.2009.080451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nicoletti F, Fagone P, Meroni P, McCubrey J, Bendtzen K. mTOR as a multifunctional therapeutic target in HIV infection. Drug Discov Today. 2011;16(15-16):715–21. https://doi.org/10.1016/j.drudis.2011.05.008.

    Article  CAS  PubMed  Google Scholar 

  106. Heredia A, Le N, Gartenhaus RB, Sausville E, Medina-Moreno S, Zapata JC, et al. Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice. Proc Natl Acad Sci U S A. 2015;112(30):9412–7. https://doi.org/10.1073/pnas.1511144112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Martin AR, Pollack RA, Capoferri A, Ambinder RF, Durand CM, Siliciano RF. Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest. 2017;127(2):651–6. https://doi.org/10.1172/JCI89552.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127–39. https://doi.org/10.1016/j.cmet.2016.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frederick DW, Loro E, Liu L, Davila A Jr, Chellappa K, Silverman IM, et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 2016;24(2):269–82. https://doi.org/10.1016/j.cmet.2016.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tarrago MG, Chini CCS, Kanamori KS, Warner GM, Caride A, de Oliveira GC, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) decline. Cell Metab. 2018;27(5):1081–95 e10. https://doi.org/10.1016/j.cmet.2018.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5. https://doi.org/10.1038/nature01578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Balan V, Miller GS, Kaplun L, Balan K, Chong ZZ, Li F, et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem. 2008;283(41):27810–9. https://doi.org/10.1074/jbc.M804681200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. North BJ, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 2004;5(5):224. https://doi.org/10.1186/gb-2004-5-5-224.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhou S, Tang X, Chen HZ. Sirtuins and insulin resistance. Front Endocrinol (Lausanne). 2018;9:748. https://doi.org/10.3389/fendo.2018.00748.

    Article  Google Scholar 

  115. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105(9):3374–9. https://doi.org/10.1073/pnas.0712145105.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Imai SI, Guarente L. It takes two to tango: NAD(+) and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2:16017. https://doi.org/10.1038/npjamd.2016.17.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016;17(11):679–90. https://doi.org/10.1038/nrm.2016.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280(17):17038–45. https://doi.org/10.1074/jbc.M500655200.

    Article  CAS  PubMed  Google Scholar 

  119. McCormack S, Polyak E, Ostrovsky J, Dingley SD, Rao M, Kwon YJ, et al. Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans. Mitochondrion. 2015;22:45–59. https://doi.org/10.1016/j.mito.2015.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-Mariscal I, Carlson OD, et al. Resveratrol prevents beta-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes. 2013;62(10):3500–13. https://doi.org/10.2337/db13-0266.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mattison JA, Wang M, Bernier M, Zhang J, Park SS, Maudsley S, et al. Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab. 2014;20(1):183–90. https://doi.org/10.1016/j.cmet.2014.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bernier M, Wahl D, Ali A, Allard J, Faulkner S, Wnorowski A, et al. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging (Albany NY). 2016;8(5):899–916. https://doi.org/10.18632/aging.100942.

    Article  CAS  Google Scholar 

  123. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6. https://doi.org/10.1038/nature01960.

    Article  CAS  PubMed  Google Scholar 

  124. Viswanathan M, Kim SK, Berdichevsky A, Guarente L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell. 2005;9(5):605–15. https://doi.org/10.1016/j.devcel.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  125. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–9. https://doi.org/10.1038/nature02789.

    Article  CAS  PubMed  Google Scholar 

  126. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. 2007;128(10):546–52. https://doi.org/10.1016/j.mad.2007.07.007.

    Article  CAS  PubMed  Google Scholar 

  127. Parashar V, Rogina B. dSir2 mediates the increased spontaneous physical activity in flies on calorie restriction. Aging (Albany NY). 2009;1(6):529–41. https://doi.org/10.18632/aging.100061.

    Article  CAS  Google Scholar 

  128. Liu T, Qi H, Ma L, Liu Z, Fu H, Zhu W, et al. Resveratrol attenuates oxidative stress and extends life span in the annual fish Nothobranchius guentheri. Rejuvenation Res. 2015;18(3):225–33. https://doi.org/10.1089/rej.2014.1618.

    Article  CAS  PubMed  Google Scholar 

  129. Yu X, Li G. Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol. 2012;47(12):940–9. https://doi.org/10.1016/j.exger.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  130. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42. https://doi.org/10.1038/nature05354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 2013;18(4):4689–702. https://doi.org/10.3390/molecules18044689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kan NW, Ho CS, Chiu YS, Huang WC, Chen PY, Tung YT, et al. Effects of resveratrol supplementation and exercise training on exercise performance in middle-aged mice. Molecules. 2016;21(5). https://doi.org/10.3390/molecules21050661.

  133. Kane AE, Hilmer SN, Boyer D, Gavin K, Nines D, Howlett SE, et al. Impact of longevity interventions on a validated mouse clinical frailty index. J Gerontol A Biol Sci Med Sci. 2016;71(3):333–9. https://doi.org/10.1093/gerona/glu315.

    Article  CAS  PubMed  Google Scholar 

  134. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab. 2013;18(4):533–45. https://doi.org/10.1016/j.cmet.2013.09.004.

    Article  CAS  PubMed  Google Scholar 

  135. • Rabassa M, Zamora-Ros R, Urpi-Sarda M, Bandinelli S, Ferrucci L, Andres-Lacueva C, et al. Association of habitual dietary resveratrol exposure with the development of frailty in older age: the Invecchiare in Chianti study. Am J Clin Nutr. 2015;102(6):1534–42. https://doi.org/10.3945/ajcn.115.118976This was a longitudinal study of persons aged 65 years and older from the Aging in Chianti study. The combination of total dietary resveratrol and total urinary resveratrol was found to be inversely associated with frailty risk over 3 years of follow-up.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22. https://doi.org/10.1016/j.cmet.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  137. Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stodkilde-Jorgensen H, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. 2013;62(4):1186–95. https://doi.org/10.2337/db12-0975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. McDermott MM, Leeuwenburgh C, Guralnik JM, Tian L, Sufit R, Zhao L, et al. Effect of resveratrol on walking performance in older people with peripheral artery disease: the RESTORE randomized clinical trial. JAMA Cardiol. 2017;2(8):902–7. https://doi.org/10.1001/jamacardio.2017.0538.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chan CN, Trinite B, Levy DN. Potent inhibition of HIV-1 replication in resting CD4 T cells by resveratrol and pterostilbene. Antimicrob Agents Chemother. 2017;61(9). https://doi.org/10.1128/AAC.00408-17.

  140. Touzet O, Philips A. Resveratrol protects against protease inhibitor-induced reactive oxygen species production, reticulum stress and lipid raft perturbation. Aids. 2010;24(10):1437–47. https://doi.org/10.1097/QAD.0b013e32833a6114.

    Article  CAS  PubMed  Google Scholar 

  141. Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, et al. SRT1720 improves survival and healthspan of obese mice. Sci Rep. 2011;1:70. https://doi.org/10.1038/srep00070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014;6(5):836–43. https://doi.org/10.1016/j.celrep.2014.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell. 2014;13(5):787–96. https://doi.org/10.1111/acel.12220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–6. https://doi.org/10.1038/nature06261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35(3):146–54. https://doi.org/10.1016/j.tips.2013.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Razi S, Cogger VC, Kennerson M, Benson VL, McMahon AC, Blyth FM, et al. SIRT1 polymorphisms and serum-induced SIRT1 protein expression in aging and frailty: the CHAMP study. J Gerontol A Biol Sci Med Sci. 2017;72(7):870–6. https://doi.org/10.1093/gerona/glx018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kumar R, Mohan N, Upadhyay AD, Singh AP, Sahu V, Dwivedi S, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80. https://doi.org/10.1111/acel.12260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bortell N, Basova L, Najera JA, Morsey B, Fox HS, Marcondes MCG. Sirtuin 1-chromatin-binding dynamics points to a common mechanism regulating inflammatory targets in SIV infection and in the aging brain. J NeuroImmune Pharmacol. 2018;13(2):163–78. https://doi.org/10.1007/s11481-017-9772-3.

    Article  PubMed  Google Scholar 

  149. Justice JN, Gubbi S, Kulkarni AS, Bartley JM, Kuchel GA, Barzilai N. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. Geroscience. 2020. https://doi.org/10.1007/s11357-020-00261-6.

  150. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ Res. 2016;119(5):652–65. https://doi.org/10.1161/CIRCRESAHA.116.308445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell. 2013;12(3):489–98. https://doi.org/10.1111/acel.12075.

    Article  CAS  PubMed  Google Scholar 

  152. Cuyas E, Verdura S, Llorach-Pares L, Fernandez-Arroyo S, Joven J, Martin-Castillo B, et al. Metformin is a direct SIRT1-activating compound: computational modeling and experimental validation. Front Endocrinol (Lausanne). 2018;9:657. https://doi.org/10.3389/fendo.2018.00657.

    Article  Google Scholar 

  153. Wang Y, Xu W, Yan Z, Zhao W, Mi J, Li J, et al. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. J Exp Clin Cancer Res. 2018;37(1):63. https://doi.org/10.1186/s13046-018-0731-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. https://doi.org/10.1016/j.cmet.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017;25(2):463–71. https://doi.org/10.1016/j.cmet.2016.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, et al. Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev. 2013;134(9):381–90. https://doi.org/10.1016/j.mad.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  157. Lee YS, Doonan BB, Wu JM, Hsieh TC. Combined metformin and resveratrol confers protection against UVC-induced DNA damage in A549 lung cancer cells via modulation of cell cycle checkpoints and DNA repair. Oncol Rep. 2016;35(6):3735–41. https://doi.org/10.3892/or.2016.4740.

    Article  CAS  PubMed  Google Scholar 

  158. Algire C, Moiseeva O, Deschenes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila). 2012;5(4):536–43. https://doi.org/10.1158/1940-6207.CAPR-11-0536.

    Article  CAS  Google Scholar 

  159. Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 2019;25(4):473–85 e8. https://doi.org/10.1016/j.stem.2019.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bauer PV, Duca FA, Waise TMZ, Rasmussen BA, Abraham MA, Dranse HJ, et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 2018;27(1):101–17 e5. https://doi.org/10.1016/j.cmet.2017.09.019.

    Article  CAS  PubMed  Google Scholar 

  161. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol. 2014;80(19):5935–43. https://doi.org/10.1128/AEM.01357-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. https://doi.org/10.1038/ncomms3192.

    Article  CAS  PubMed  Google Scholar 

  163. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci U S A. 2014;111(24):E2501–9. https://doi.org/10.1073/pnas.1321776111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228–39. https://doi.org/10.1016/j.cell.2013.02.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Alfaras I, Mitchell SJ, Mora H, Lugo DR, Warren A, Navas-Enamorado I, et al. Health benefits of late-onset metformin treatment every other week in mice. NPJ Aging Mech Dis. 2017;3:16. https://doi.org/10.1038/s41514-017-0018-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Baskaran D, Aparicio-Ugarriza R, Ferri-Guerra J, Milyani R, Florez H, Ruiz JG. Is there an association between metformin exposure and frailty? Gerontol Geriatr Med. 2020;6:2333721420924956. https://doi.org/10.1177/2333721420924956.

    Article  PubMed  PubMed Central  Google Scholar 

  167. • Wang CP, Lorenzo C, Espinoza SE. Frailty attenuates the impact of metformin on reducing mortality in older adults with type 2 diabetes. Journal of endocrinology, diabetes & obesity. 2014;2(2) In this cross-sectional observational study of 2415 veterans, metformin use was associated with a significantly decreased odds of frailty compared to sulfonylurea usage.

  168. Laksmi PW, Setiati S, Tamin TZ, Soewondo P, Rochmah W, Nafrialdi N, et al. Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: a double blind randomized controlled trial among non-diabetic pre-frail elderly patients. Acta Med Indones. 2017;49(2):118–27.

    PubMed  Google Scholar 

  169. Espinoza SE, Musi N, Wang CP, Michalek J, Orsak B, Romo T, et al. Rationale and study design of a randomized clinical trial of metformin to prevent frailty in older adults with prediabetes. J Gerontol A Biol Sci Med Sci. 2020;75(1):102–9. https://doi.org/10.1093/gerona/glz078.

    Article  CAS  PubMed  Google Scholar 

  170. • Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a tool to target aging. Cell Metab. 2016;23(6):1060–5. https://doi.org/10.1016/j.cmet.2016.05.011This article provides an overview of the data informing the use of metformin in the Targeting Aging with Metformin (TAME) trial – a trial with a planned enrollment of 3000 older adults aged 65-79 years to examine the effect of metformin on the development of aging-related conditions, including frailty.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Justice JN, Niedernhofer L, Robbins PD, Aroda VR, Espeland MA, Kritchevsky SB, et al. Development of clinical trials to extend healthy lifespan. Cardiovasc Endocrinol Metab. 2018;7(4):80–3. https://doi.org/10.1097/XCE.0000000000000159.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shikuma CM, Chew GM, Kohorn L, Souza SA, Chow D, SahBandar IN, et al. Short communication: metformin reduces CD4 T cell exhaustion in HIV-infected adults on suppressive antiretroviral therapy. AIDS Res Hum Retrovir. 2020;36(4):303–5. https://doi.org/10.1089/AID.2019.0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, et al. Metformin effect on gut microbiota: insights for HIV-related inflammation. AIDS Res Ther. 2020;17(1):10. https://doi.org/10.1186/s12981-020-00267-2.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res. 2020;221:23–43. https://doi.org/10.1016/j.trsl.2020.03.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Isnard S, Lin J, Fombuena B, Ouyang J, Varin TV, Richard C, et al. Repurposing metformin in nondiabetic people with HIV: influence on weight and gut microbiota. Open Forum Infect Dis. 2020;7(9):ofaa338. https://doi.org/10.1093/ofid/ofaa338.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Routy JP, Isnard S, Mehraj V, Ostrowski M, Chomont N, Ancuta P, et al. Effect of metformin on the size of the HIV reservoir in non-diabetic ART-treated individuals: single-arm non-randomised Lilac pilot study protocol. BMJ Open. 2019;9(4):e028444. https://doi.org/10.1136/bmjopen-2018-028444.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Stout MB, Steyn FJ, Jurczak MJ, Camporez JG, Zhu Y, Hawse JR, et al. 17alpha-estradiol alleviates age-related metabolic and inflammatory dysfunction in male mice without inducing feminization. J Gerontol A Biol Sci Med Sci. 2017;72(1):3–15. https://doi.org/10.1093/gerona/glv309.

    Article  CAS  PubMed  Google Scholar 

  178. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, et al. Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82. https://doi.org/10.1111/acel.12170.

    Article  CAS  PubMed  Google Scholar 

  179. Tezze C, Romanello V, Sandri M. FGF21 as modulator of metabolism in health and disease. Front Physiol. 2019;10:419. https://doi.org/10.3389/fphys.2019.00419.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012;1:e00065. https://doi.org/10.7554/eLife.00065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008;8(1):77–83. https://doi.org/10.1016/j.cmet.2008.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bartali B, Semba RD, Araujo AB. Klotho, FGF21 and FGF23: novel pathways to musculoskeletal health? The Journal of frailty & aging. 2013;2(4):179–83. https://doi.org/10.14283/jfa.2013.26.

    Article  CAS  Google Scholar 

  183. Webel AR, Jenkins T, Longenecker CT, Vest M, Davey CH, Currie J, et al. Relationship of HIV status and fatigue, cardiorespiratory fitness, myokines, and physical activity. J Assoc Nurses AIDS Care. 2019;30(4):392–404. https://doi.org/10.1097/JNC.0000000000000022.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Lindegaard B, Hvid T, Grondahl T, Frosig C, Gerstoft J, Hojman P, et al. Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV. PLoS One. 2013;8(3):e55632. https://doi.org/10.1371/journal.pone.0055632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Payne BA, Price DA, Chinnery PF. Elevated serum fibroblast growth factor 21 levels correlate with immune recovery but not mitochondrial dysfunction in HIV infection. AIDS Res Ther. 2013;10(1):27. https://doi.org/10.1186/1742-6405-10-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46. https://doi.org/10.1038/nature13193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6. https://doi.org/10.1038/nature10600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Thoppil H, Riabowol K. Senolytics: a translational bridge between cellular senescence and organismal aging. Front Cell Dev Biol. 2019;7:367. https://doi.org/10.3389/fcell.2019.00367.

    Article  PubMed  Google Scholar 

  189. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422. https://doi.org/10.1038/s41467-017-00314-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://doi.org/10.1016/j.ebiom.2018.09.015.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://doi.org/10.1016/j.ebiom.2019.08.069.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63. https://doi.org/10.1016/j.ebiom.2018.12.052.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Rodriguez-Mora S, Spivak AM, Szaniawski MA, Lopez-Huertas MR, Alcami J, Planelles V, et al. Tyrosine kinase inhibition: a new perspective in the fight against HIV. Current HIV/AIDS reports. 2019;16(5):414–22. https://doi.org/10.1007/s11904-019-00462-5.

    Article  PubMed  PubMed Central  Google Scholar 

  195. •• Pazan F, Petrovic M, Cherubini A, Onder G, Cruz-Jentoft AJ, Denkinger M, et al. Current evidence on the impact of medication optimization or pharmacological interventions on frailty or aspects of frailty: a systematic review of randomized controlled trials. Eur J Clin Pharmacol. 2020. https://doi.org/10.1007/s00228-020-02951-8This article is a systematic review of randomized controlled trials examining pharmacologic interventions targeting frailty parameters among adults 60 years and older.

  196. Travison TG, Basaria S, Storer TW, Jette AM, Miciek R, Farwell WR, et al. Clinical meaningfulness of the changes in muscle performance and physical function associated with testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci. 2011;66(10):1090–9. https://doi.org/10.1093/gerona/glr100.

    Article  CAS  PubMed  Google Scholar 

  197. Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22. https://doi.org/10.1056/NEJMoa1000485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010;58(6):1134–43. https://doi.org/10.1111/j.1532-5415.2010.02865.x.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Gharahdaghi N, Rudrappa S, Brook MS, Idris I, Crossland H, Hamrock C, et al. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J Cachexia Sarcopenia Muscle. 2019;10(6):1276–94. https://doi.org/10.1002/jcsm.12472.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Liu PY, Wishart SM, Handelsman DJ. A double-blind, placebo-controlled, randomized clinical trial of recombinant human chorionic gonadotropin on muscle strength and physical function and activity in older men with partial age-related androgen deficiency. J Clin Endocrinol Metab. 2002;87(7):3125–35. https://doi.org/10.1210/jcem.87.7.8630.

    Article  CAS  PubMed  Google Scholar 

  201. • Erlandson KM, Ng DK, Jacobson LP, Margolick JB, Dobs AS, Palella FJ Jr, et al. Inflammation, immune activation, immunosenescence, and hormonal biomarkers in the frailty-related phenotype of men with or at risk for HIV infection. J Infect Dis. 2017;215(2):228–37. https://doi.org/10.1093/infdis/jiw523This study demonstrated the significant association of low free testosterone levels with frailty in HIV.

    Article  CAS  PubMed  Google Scholar 

  202. Rochira V, Diazzi C, Santi D, Brigante G, Ansaloni A, Decaroli MC, et al. Low testosterone is associated with poor health status in men with human immunodeficiency virus infection: a retrospective study. Andrology. 2015;3(2):298–308. https://doi.org/10.1111/andr.310.

    Article  CAS  PubMed  Google Scholar 

  203. Pencina KM, Li Z, Montano M. Objectively measured physical activity in asymptomatic middle-aged men is associated with routine blood-based biomarkers. J Gerontol A Biol Sci Med Sci. 2019;74(Suppl_1):S32–S7. https://doi.org/10.1093/gerona/glz151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dolan Looby SE, Collins M, Lee H, Grinspoon S. Effects of long-term testosterone administration in HIV-infected women: a randomized, placebo-controlled trial. Aids. 2009;23(8):951–9. https://doi.org/10.1097/QAD.0b013e3283299145.

    Article  CAS  PubMed  Google Scholar 

  205. Knapp PE, Storer TW, Herbst KL, Singh AB, Dzekov C, Dzekov J, et al. Effects of a supraphysiological dose of testosterone on physical function, muscle performance, mood, and fatigue in men with HIV-associated weight loss. Am J Physiol Endocrinol Metab. 2008;294(6):E1135–43. https://doi.org/10.1152/ajpendo.90213.2008.

    Article  CAS  PubMed  Google Scholar 

  206. • Bhasin S, Storer TW, Javanbakht M, Berman N, Yarasheski KE, Phillips J, et al. Testosterone replacement and resistance exercise in HIV-infected men with weight loss and low testosterone levels. Jama. 2000;283(6):763–70. https://doi.org/10.1001/jama.283.6.763In this randomized controlled trial of men with HIV with low testosterone levels aged 18–50 years, 16 weeks of testosterone administration with or without resistance exercise increased muscle strength and lean body mass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Setiati S, Anugrahini FJE, Tamin TZ, Istanti R. Combination of alfacalcidol and calcium improved handgrip strength and mobility among Indonesian older women: a randomized controlled trial. Geriatr Gerontol Int. 2018;18(3):434–40. https://doi.org/10.1111/ggi.13201.

    Article  PubMed  Google Scholar 

  208. Aspenberg P, Malouf J, Tarantino U, Garcia-Hernandez PA, Corradini C, Overgaard S, et al. Effects of teriparatide compared with risedronate on recovery after pertrochanteric hip fracture: results of a randomized, active-controlled, double-blind clinical trial at 26 weeks. J Bone Joint Surg Am. 2016;98(22):1868–78. https://doi.org/10.2106/JBJS.15.01217.

    Article  PubMed  PubMed Central  Google Scholar 

  209. White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, et al. Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab. 2009;94(4):1198–206. https://doi.org/10.1210/jc.2008-0632.

    Article  CAS  PubMed  Google Scholar 

  210. Beyer I, Bautmans I, Njemini R, Demanet C, Bergmann P, Mets T. Effects on muscle performance of NSAID treatment with piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. A double blind randomized controlled trial BMC Musculoskelet Disord. 2011;12:292. https://doi.org/10.1186/1471-2474-12-292.

    Article  CAS  PubMed  Google Scholar 

  211. Adrian S, Scherzinger A, Sanyal A, Lake JE, Falutz J, Dube MP, et al. The growth hormone releasing hormone analogue, tesamorelin, decreases muscle fat and increases muscle area in adults with HIV. J Frailty Aging. 2019;8(3):154–9. https://doi.org/10.14283/jfa.2018.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. •• Piggott DA, Erlandson KM, Yarasheski KE. Frailty in HIV: epidemiology, biology, measurement, interventions, and research needs. Current HIV/AIDS reports. 2016. 10.1007/s11904-016-0334-8. This article reviews the epidemiology of and provides an integrative research framework for frailty in HIV.

  213. •• Piggott DA, Bandeen-Roche K, Mehta SH, Brown TT, Yang H, Walston JD, et al. Frailty transitions, inflammation, and mortality among persons aging with HIV infection and injection drug use. Aids. 2020;34(8):1217–25. https://doi.org/10.1097/QAD.0000000000002527This longitudinal study of frailty transitions among HIV-infected and uninfected persons demonstrated the significant association of higher socioeconomic status, lower comorbidity, ART-mediated HIV virologic suppression, and lower levels of inflammation with reduced frailty progression and greater frailty recovery.

    Article  PubMed  Google Scholar 

  214. UNAIDS Fact Sheet— World AIDS Day 2020. Accessed 12/27/2020. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf.

  215. •• Fukui SM, Piggott DA, Erlandson KM. Inflammation strikes again: frailty and HIV. Current HIV/AIDS reports. 2018;15(1):20–9. https://doi.org/10.1007/s11904-018-0372-5This article reviews evidence for the relationship between inflammation and frailty in HIV and putative targets for inflammation-based interventions for frailty in HIV.

    Article  PubMed  Google Scholar 

  216. Piggott DA, Varadhan R, Mehta SH, Brown TT, Li H, Walston JD, et al. Frailty, inflammation, and mortality among persons aging with HIV infection and injection drug use. J Gerontol A Biol Sci Med Sci. 2015;70:1542–7. https://doi.org/10.1093/gerona/glv107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. National Academies of Sciences, Engineering, and Medicine 2017. Communities in action: pathways to health equity. Washington, DC: The National Academies Press. Available at: 10.17226/24624. Accessed April 14, 2020.

  218. Olshansky SJ, Antonucci T, Berkman L, Binstock RH, Boersch-Supan A, Cacioppo JT, et al. Differences in life expectancy due to race and educational differences are widening, and many may not catch up. Health Aff (Millwood). 2012;31(8):1803–13. https://doi.org/10.1377/hlthaff.2011.0746.

    Article  Google Scholar 

  219. Department of Health and Human Services. Secretary’s Advisory Committee on National Health Promotion and Disease Prevention Objectives for 2020. Healthy People 2020: an opportunity to address the societal determinants of health in the United States. https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health. Published 2020. Accessed Dec 27, 2020.

  220. Bachhuber MA, Southern WN. Hospitalization rates of people living with HIV in the United States, 2009. Public Health Rep. 2014;129(2):178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Harttgen K, Kowal P, Strulik H, Chatterji S, Vollmer S. Patterns of frailty in older adults: comparing results from higher and lower income countries using the Survey of Health, Ageing and Retirement in Europe (SHARE) and the Study on Global AGEing and Adult Health (SAGE). PLoS One. 2013;8(10):e75847. https://doi.org/10.1371/journal.pone.0075847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lesko CR, Cole SR, Miller WC, Westreich D, Eron JJ, Adimora AA, et al. Ten-year survival by race/ethnicity and sex among treated, HIV-infected adults in the United States. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2015;60(11):1700–7. https://doi.org/10.1093/cid/civ183.

    Article  Google Scholar 

  223. Linley L, Prejean J, An Q, Chen M, Hall HI. Racial/ethnic disparities in HIV diagnoses among persons aged 50 years and older in 37 US States, 2005–2008. Am J Public Health. 2012;102(8):1527–34. https://doi.org/10.2105/AJPH.2011.300431.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Losina E, Schackman BR, Sadownik SN, Gebo KA, Walensky RP, Chiosi JJ, et al. Racial and sex disparities in life expectancy losses among HIV-infected persons in the united states: impact of risk behavior, late initiation, and early discontinuation of antiretroviral therapy. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2009;49(10):1570–8. https://doi.org/10.1086/644772.

    Article  Google Scholar 

  225. Millett GA, Peterson JL, Flores SA, Hart TA, Jeffries WL, Wilson PA, et al. Comparisons of disparities and risks of HIV infection in black and other men who have sex with men in Canada, UK, and USA: a meta-analysis. Lancet. 2012;380(9839):341–8. https://doi.org/10.1016/S0140-6736(12)60899-X.

    Article  PubMed  Google Scholar 

  226. Rosenberg ES, Millett GA, Sullivan PS, Del Rio C, Curran JW. Understanding the HIV disparities between black and white men who have sex with men in the USA using the HIV care continuum: a modeling study. Lancet HIV. 2014;1(3):e112–e8. https://doi.org/10.1016/S2352-3018(14)00011-3.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Siddiqi AE, Hu X, Hall HI. Centers for Disease C, Prevention. Mortality among blacks or African Americans with HIV infection—United States, 2008–2012. MMWR Morb Mortal Wkly Rep. 2015;64(4):81–6.

    PubMed  PubMed Central  Google Scholar 

  228. Simard EP, Fransua M, Naishadham D, Jemal A. The influence of sex, race/ethnicity, and educational attainment on human immunodeficiency virus death rates among adults, 1993-2007. Arch Intern Med. 2012;172(20):1591–8. https://doi.org/10.1001/archinternmed.2012.4508.

    Article  PubMed  Google Scholar 

  229. Soler-Vila H, Garcia-Esquinas E, Leon-Munoz LM, Lopez-Garcia E, Banegas JR, Rodriguez-Artalejo F. Contribution of health behaviours and clinical factors to socioeconomic differences in frailty among older adults. J Epidemiol Community Health. 2016;70(4):354–60. https://doi.org/10.1136/jech-2015-206406.

    Article  PubMed  Google Scholar 

  230. Szanton SL, Seplaki CL, Thorpe RJ Jr, Allen JK, Fried LP. Socioeconomic status is associated with frailty: the Women's Health and Aging Studies. J Epidemiol Community Health. 2010;64(1):63–7. https://doi.org/10.1136/jech.2008.078428.

    Article  CAS  PubMed  Google Scholar 

  231. Hirsch C, Anderson ML, Newman A, Kop W, Jackson S, Gottdiener J, et al. The association of race with frailty: the cardiovascular health study. Ann Epidemiol. 2006;16(7):545–53. https://doi.org/10.1016/j.annepidem.2005.10.003.

    Article  PubMed  Google Scholar 

  232. Espinoza SE, Hazuda HP. Frailty in older Mexican-American and European-American adults: is there an ethnic disparity? J Am Geriatr Soc. 2008;56(9):1744–9. https://doi.org/10.1111/j.1532-5415.2008.01845.x.

    Article  PubMed  Google Scholar 

  233. Usher T, Buta B, Thorpe RJ, Huang J, Samuel LJ, Kasper JD, et al. Dissecting the racial/ethnic disparity in frailty in a nationally representative cohort study with respect to health, income, and measurement. J Gerontol A Biol Sci Med Sci. 2020;76:69–76. https://doi.org/10.1093/gerona/glaa061.

    Article  PubMed Central  Google Scholar 

  234. •• Bandeen-Roche K, Seplaki CL, Huang J, Buta B, Kalyani RR, Varadhan R, et al. Frailty in older adults: a nationally representative profile in the United States. J Gerontol A Biol Sci Med Sci. 2015;70(11):1427–34. https://doi.org/10.1093/gerona/glv133This nationally representative study of adults 65 years and older in the United States found frailty prevalence to be significantly higher among racial and ethnic minorities and persons of lower income.

    Article  PubMed  PubMed Central  Google Scholar 

  235. •• Dugravot A, Fayosse A, Dumurgier J, Bouillon K, Rayana TB, Schnitzler A, et al. Social inequalities in multimorbidity, frailty, disability, and transitions to mortality: a 24-year follow-up of the Whitehall II cohort study. Lancet Public Health. 2020;5(1):e42–50. https://doi.org/10.1016/S2468-2667(19)30226-9In this longitudinal UK-based study of adults enrolled between the ages of 35 and 55 years and followed for a median of ~24 years, lower socioeconomic status was significantly associated with a greater likelihood of transition to a frail state.

    Article  PubMed  Google Scholar 

  236. Williams DR, Cooper LA. Reducing racial inequities in health: using what we already know to take action. Int J Environ Res Public Health. 2019;16(4). https://doi.org/10.3390/ijerph16040606.

  237. Liburd LC, Hall JE, Mpofu JJ, Williams SM, Bouye K, Penman-Aguilar A. Addressing health equity in public health practice: frameworks, promising strategies, and measurement considerations. Annu Rev Public Health. 2020;41:417–32. https://doi.org/10.1146/annurev-publhealth-040119-094119.

    Article  PubMed  Google Scholar 

  238. Szanton SL, Xue QL, Leff B, Guralnik J, Wolff JL, Tanner EK, et al. Effect of a biobehavioral environmental approach on disability among low-income older adults: a randomized clinical trial. JAMA Intern Med. 2019;179(2):204–11. https://doi.org/10.1001/jamainternmed.2018.6026.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Drinkwater C, Wildman J, Moffatt S. Social prescribing. BMJ. 2019;364:l1285. https://doi.org/10.1136/bmj.l1285.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

KME was supported by funding through the NIA/NIH R01AG066562 and AG054366. DAP was supported by funding through the NIA/NIH RO1AG060825 and the Robert Wood Johnson Foundation Harold Amos Program. Contents are the authors’ sole responsibility and do not necessarily represent official NIH views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine M. Erlandson.

Ethics declarations

Conflict of Interest

KME has received grant funding from Gilead Sciences and payment for consulting from Theratechnologies and ViiV/GSK (all paid to the University of Colorado).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Complications of HIV and Antiretroviral Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erlandson, K.M., Piggott, D.A. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 18, 157–175 (2021). https://doi.org/10.1007/s11904-021-00554-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00554-1

Keywords

Navigation