Skip to main content

Advertisement

Log in

Glucokinase MODY and Implications for Treatment Goals of Common Forms of Diabetes

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Treatment goals in diabetes concentrate on reducing the risk of vascular complications, largely through setting targets for glycated haemoglobin (HbA1c). These targets are based on epidemiological studies of complication development, but so far have not adequately addressed the adverse effects associated with lowering HbA1c towards the normal range. Glucokinase (GCK) mutations cause a monogenic form of hyperglycaemia (GCK-MODY) characterised by fasting hyperglycaemia with low postprandial glucose excursions and a marginally elevated HbA1c. Minimal levels of vascular complications (comparable with nondiabetic individuals) are observed in GCK-MODY, leading to the hypothesis that GCK-MODY may represent a useful paradigm for assessing treatment goals in all forms of diabetes. In this review, we discuss the evidence behind this concept, suggest ways of translating this hypothesis into clinical practice and address some of the caveats of such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schramm TK, Gislason GH, Kober L, Rasmussen S, Rasmussen JN, Abildstrom SZ, et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation. 2008;117(15):1945–54.

    Article  PubMed  CAS  Google Scholar 

  2. Kahn MB, Cubbon RM, Mercer B, Wheatcroft AC, Gherardi G, Aziz A, et al. Association of diabetes with increased all-cause mortality following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction in the contemporary era. Diabetes Vascul Dis Res: Off J Int Soc Diabetes Vascul Dis. 2012;9(1):3–9.

    Article  Google Scholar 

  3. van Straten AH, Soliman Hamad MA, van Zundert AA, Martens EJ, Schonberger JP, ter Woorst JF, et al. Diabetes and survival after coronary artery bypass grafting: comparison with an age- and sex-matched population. Eur J Cardio-Thoracic Surg: Off J Eur Assoc Cardio-Thoracic Surg. 2010;37(5):1068–74.

    Article  Google Scholar 

  4. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  6. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  PubMed  CAS  Google Scholar 

  7. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  8. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  9. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff Jr DC, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  PubMed  CAS  Google Scholar 

  10. Frier BM, Schernthaner G, Heller SR. Hypoglycemia and cardiovascular risks. Diabetes Care. 2011;34 Suppl 2:S132–7.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F, et al. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. New Engl J Med. 1993;328(10):697–702.

    Article  PubMed  CAS  Google Scholar 

  12. Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, et al. Linkage of type 2 diabetes to the glucokinase gene. Lancet. 1992;339:1307–10.

    Article  PubMed  CAS  Google Scholar 

  13. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011;343:d6044.

    Article  PubMed  CAS  Google Scholar 

  14. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8.

    Article  PubMed  CAS  Google Scholar 

  15. Gloyn AL, van de Bunt M, Stratton IM, Lonie L, Tucker L, Ellard S, et al. Prevalence of GCK mutations in individuals screened for fasting hyperglycaemia. Diabetologia. 2009;52(1):172–4.

    Article  PubMed  CAS  Google Scholar 

  16. Feigerlova E, Pruhova S, Dittertova L, Lebl J, Pinterova D, Kolostova K, et al. Aetiological heterogeneity of asymptomatic hyperglycaemia in children and adolescents. Eur J Pediatr. 2006;165(7):446–52.

    Article  PubMed  CAS  Google Scholar 

  17. Chakera AJ, Spyer G, Vincent N, Ellard S, Hattersley AT, Dunne FP. The 0.1 % of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. Diabetes Care. 2014;37(5):1230–6.

    Article  PubMed  CAS  Google Scholar 

  18. Velho G, Froguel P, Clement K, Pueyo ME, Rakotoambinina B, Zouali H, et al. Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet. 1992;340(8817):444–8.

    Article  PubMed  CAS  Google Scholar 

  19. Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, Stoffel M, et al. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Investig. 1994;93(3):1120–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Stride A, Vaxillaire M, Tuomi T, Barbetti F, Njolstad PR, Hansen T, et al. The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia. 2002;45(3):427–35.

    Article  PubMed  CAS  Google Scholar 

  21. Steele AM, Wensley KJ, Ellard S, Murphy R, Shepherd M, Colclough K, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS ONE. 2013;8(6):e65326. A useful article which reports the range of fasting plasma glucose and HbA1c seen in a large group of UK individuals with glucokinase mutations and suggests a reference range for HbA1c to help is identifying cases.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Stride A, Shields B, Gill-Carey O, Chakera AJ, Colclough K, Ellard S, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57(1):54–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Sagen JV, Bjorkhaug L, Molnes J, Raeder H, Grevle L, Sovik O, et al. Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr Diabetes. 2008;9(5):442–9.

    Article  PubMed  CAS  Google Scholar 

  24. Velho G, Blanche H, Vaxillaire M, Bellanne-Chantelot C, Pardini VC, Timsit J, et al. Identification of 14 new glucokinase mutations and description of the clinical profile of 42 MODY-2 families. Diabetologia. 1997;40:217–24.

    Article  PubMed  CAS  Google Scholar 

  25. Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA : J Am Med Assoc. 2014;311(3):279–86. A well-performed study examining the prevalence of vascular complications in patients with GCK-MODY. Standardised methods were used to assess patients and compare to family controls and young-onset type 2 diabetes. This study confirms the many anecdotal reports that vascular complications are found at very low levels in GCK-MODY.

    Article  CAS  Google Scholar 

  26. McCance DR, Hanson RL, Charles MA, Jacobsson LT, Pettitt DJ, Bennett PH, et al. Comparison of tests for glycated haemoglobin and fasting and two hour plasma glucose concentrations as diagnostic methods for diabetes. BMJ. 1994;308(6940):1323–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Engelgau MM, Thompson TJ, Herman WH, Boyle JP, Aubert RE, Kenny SJ, et al. Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes. Diagnostic criteria and performance revisited. Diabetes Care. 1997;20(5):785–91.

    Article  PubMed  CAS  Google Scholar 

  28. Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K, et al. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care. 2011;34(1):145–50. Demonstrates the glycaemic thresholds (fasting glucose, 2 hr OGTT plasma glucose and HbA1c) for developing retinopathy in a very large data-pooling study including over 44000 individuals.

    Article  PubMed Central  PubMed  Google Scholar 

  29. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37 Suppl 1:S81–90.

    Article  Google Scholar 

  30. Organisation WH. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. 2011.

  31. Bonora E, Tuomilehto J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care. 2011;34 Suppl 2:S184–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Balkau B, Bertrais S, Ducimetiere P, Eschwege E. Is there a glycemic threshold for mortality risk? Diabetes Care. 1999;22(5):696–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sorkin JD, Muller DC, Fleg JL, Andres R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care. 2005;28(11):2626–32.

    Article  PubMed  Google Scholar 

  34. Decode Study Group EDEG. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care. 2003;26(3):688–96.

    Article  Google Scholar 

  35. Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375(9713):481–9. Used real-world data from the UK General Practice Research Database to demonstrate that an HbA1c below 6.7 % is associated with a higher mortality than those with moderately raised HbA1c (up to 9.9 %).

    Article  PubMed  CAS  Google Scholar 

  36. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32(1):187–92. Useful summary of the recent large trials of intensive control in type 2 diabetes and the implications for management.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Elwen FR, Huskinson AC, Bottomle MJ, Heller S, James C, Baxter PD, et al. One year mortality in individuals with diabetes following severe hypoglycaemia requiring emergency services intervention. Diabet Med. 2014;31(S1):26–7.

    Google Scholar 

  38. Mannucci E, Monami M, Lamanna C, Adalsteinsson JE. Post-prandial glucose and diabetic complications: systematic review of observational studies. Acta Diabetol. 2012;49(4):307–14.

    Article  PubMed  CAS  Google Scholar 

  39. Authors/Task Force M, Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34(39):3035–87.

    Article  PubMed  Google Scholar 

  40. Fendler W RM, Borowiec M, Malachowska B, Antosik K, Szadkowska A, Banach M, Urbanska-Kosinska M, Szopa M, Malecki M, Mlynarski W. Less but better: cardioprotective lipid profile of patients with GCK-MODY despite lower HDL cholesterol level. Acta Diabetol. 2014;in press.

  41. Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care. 2003;26(11):2999–3005.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ramzi A. Ajjan received research support from the NIHR, BHF, Sir Jules Thorn Trust, Abbott, Bayer, Eli Lilly, LifeScan, NovoNordisk and Takeda. He also received Advisory Board and Speaker's honoraria from Abbott, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Glaxo SmithKline, Merck Sharpe & Dohme, NovoNordisk, Roche and Takeda.

Katharine R. Owen has received research support through grants from the National Institute for Health Research (NIHR), the European Foundation for the Study of Diabetes (EFSD), and Diabetes UK and has received speaker’s honoraria from Diabetes UK and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine R. Owen.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajjan, R.A., Owen, K.R. Glucokinase MODY and Implications for Treatment Goals of Common Forms of Diabetes. Curr Diab Rep 14, 559 (2014). https://doi.org/10.1007/s11892-014-0559-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0559-0

Keywords

Navigation