Skip to main content

Advertisement

Log in

Overlap of Genetic Susceptibility to Type 1 Diabetes, Type 2 Diabetes, and Latent Autoimmune Diabetes in Adults

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Despite the notion that there is a degree of commonality to the biological etiology of type 1 diabetes (T1D) and type 2 diabetes (T2D), the lack of overlap in the genetic factors underpinning each of them suggests very distinct mechanisms. A disorder considered to be at the “intersection” of these two diseases is “latent autoimmune diabetes in adults” (LADA). Interestingly, genetic signals from both T1D and T2D are also seen in LADA, including the key HLA and transcription factor 7-like 2 (TCF7L2) loci, but the magnitudes of these effects are more complex than just pointing to LADA as being a simple admixture of T1D and T2D. We review the current status of the understanding of the genetics of LADA and place it in the context of what is known about the genetics of its better-studied “cousins,” T1D and T2D, especially with respect to the myriad of discoveries made over the last decade through genome-wide association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia. 2001;44:914–22.

    Article  CAS  PubMed  Google Scholar 

  2. Schernthaner G, Hink S, Kopp HP, Muzyka B, Streit G, Kroiss A. Progress in the characterization of slowly progressive autoimmune diabetes in adult patients (LADA or type 1.5 diabetes). Exp Clin Endocrinol Diabetes. 2001;109 Suppl 2:S94–S108.

    Article  CAS  PubMed  Google Scholar 

  3. Qu HQ, Grant SF, Bradfield JP, et al. Association analysis of type 2 diabetes loci in type 1 diabetes. Diabetes. 2008;57:1983–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tuomi T, Carlsson A, Li H, et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes. 1999;48:150–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR. Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes. 1993;42:359–62.

    Article  CAS  PubMed  Google Scholar 

  6. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  7. Gottsater A, Landin-Olsson M, Lernmark A, Fernlund P, Sundkvist G, Hagopian WA. Glutamate decarboxylase antibody levels predict rate of beta-cell decline in adult-onset diabetes. Diabetes Res Clin Pract. 1995;27:133–40.

    Article  CAS  PubMed  Google Scholar 

  8. Turner R, Stratton I, Horton V, et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet. 1997;350:1288–93.

    Article  CAS  PubMed  Google Scholar 

  9. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes. 1990;39:1315–9.

    Article  CAS  PubMed  Google Scholar 

  10. Clayton DG. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 2009;5:e1000540.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38:617–9.

    Article  CAS  PubMed  Google Scholar 

  12. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hakonarson H, Qu HQ, Bradfield JP, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes. 2008;57:1143–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hakonarson H, Grant SF, Bradfield JP, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448:591–4.

    Article  CAS  PubMed  Google Scholar 

  15. Concannon P, Onengut-Gumuscu S, Todd JA, et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes. 2008;57:2858–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Grant SF, Qu HQ, Bradfield JP, et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes. 2009;58:290–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7:e1002293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  CAS  PubMed  Google Scholar 

  21. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  22. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.

    Article  CAS  PubMed  Google Scholar 

  27. Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102.

    Article  CAS  PubMed  Google Scholar 

  28. Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7.

    Article  CAS  PubMed  Google Scholar 

  29. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41:1110–5.

    Article  CAS  PubMed  Google Scholar 

  31. Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39:977–83.

    Article  CAS  PubMed  Google Scholar 

  32. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Salonen JT, Uimari P, Aalto JM, et al. Type 2 diabetes whole-genome association study in four populations: the DiaGen Consortium. Am J Hum Genet. 2007;81:338–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 46:234-244

  35. Cho YS, Chen CH, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat Genet. 2011;44:67–72.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43:984–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234–44.

    Article  Google Scholar 

  38. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41:89–94.

    Article  CAS  PubMed  Google Scholar 

  39. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41:82–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Prokopenko I, Langenberg C, Florez JC, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41:77–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3.

    Article  CAS  PubMed  Google Scholar 

  43. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes. 1984;33:176–83.

    Article  CAS  PubMed  Google Scholar 

  44. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  CAS  PubMed  Google Scholar 

  45. Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes. 2004;53:1884–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun. 2000;1:170–84.

    Article  CAS  PubMed  Google Scholar 

  47. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

    Article  CAS  PubMed  Google Scholar 

  48. Anjos SM, Tessier MC, Polychronakos C. Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. J Clin Endocrinol Metab. 2004;89:6257–65.

    Article  CAS  PubMed  Google Scholar 

  49. Nistico L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet. 1996;5:1075–80.

    Article  CAS  PubMed  Google Scholar 

  50. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.

    Article  CAS  PubMed  Google Scholar 

  51. Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004;53:3020–3.

    Article  CAS  PubMed  Google Scholar 

  52. Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39:1074–82.

    Article  CAS  PubMed  Google Scholar 

  53. Davison LJ, Wallace C, Cooper JD, et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21:322–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80.

    Article  CAS  PubMed  Google Scholar 

  55. Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72.

    Article  CAS  PubMed  Google Scholar 

  56. Cauchi S, El Achhab Y, Choquet H, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007;85:777–82.

    Article  CAS  PubMed  Google Scholar 

  57. Zeggini E, McCarthy MI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia. 2007;50:1–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Weedon MN. The importance of TCF7L2. Diabet Med. 2007;24:1062–6.

    Article  CAS  PubMed  Google Scholar 

  59. Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hattersley AT. Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J Clin Invest. 2007;117:2077–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Williams AL, Jacobs SB, Moreno-Macias H, et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature. 2014;506:97–101.

    Article  CAS  PubMed  Google Scholar 

  62. Estrada K, Aukrust I, Bjorkhaug L, et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA. 2014;311:2305–14.

    Article  PubMed  Google Scholar 

  63. Steinthorsdottir V, Thorleifsson G, Sulem P, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8.

    Article  CAS  PubMed  Google Scholar 

  64. Flannick J, Thorleifsson G, Beer NL, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Raj SM, Howson JM, Walker NM, et al. No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia. 2009;52:2109–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Qu HQ, Polychronakos C. The TCF7L2 locus and type 1 diabetes. BMC Med Genet. 2007;8:51.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Field SF, Howson JM, Smyth DJ, Walker NM, Dunger DB, Todd JA. Analysis of the type 2 diabetes gene, TCF7L2, in 13,795 type 1 diabetes cases and control subjects. Diabetologia. 2007;50:212–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Andersen MK, Sterner M, Forsen T, et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia. 2014; [Epub ahead of print].

  70. Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia. 2008;51:1757–60.

    Article  CAS  PubMed  Google Scholar 

  71. Desai M, Zeggini E, Horton VA, et al. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia. 2007;50:68–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Desai M, Zeggini E, Horton VA, et al. The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes. 2006;55:1890–4.

    Article  CAS  PubMed  Google Scholar 

  73. Horton V, Stratton I, Bottazzo GF, et al. Genetic heterogeneity of autoimmune diabetes: age of presentation in adults is influenced by HLA DRB1 and DQB1 genotypes (UKPDS 43). UK Prospective Diabetes Study (UKPDS) Group. Diabetologia. 1999;42:608–16.

    Article  CAS  PubMed  Google Scholar 

  74. Hosszufalusi N, Vatay A, Rajczy K, et al. Similar genetic features and different islet cell autoantibody pattern of latent autoimmune diabetes in adults (LADA) compared with adult-onset type 1 diabetes with rapid progression. Diabetes Care. 2003;26:452–7.

    Article  PubMed  Google Scholar 

  75. Gambelunghe G, Ghaderi M, Tortoioli C, et al. Two distinct MICA gene markers discriminate major autoimmune diabetes types. J Clin Endocrinol Metab. 2001;86:3754–60.

    Article  CAS  PubMed  Google Scholar 

  76. Kantarova D, Buc M. Genetic susceptibility to type 1 diabetes mellitus in humans. Physiol Res Acad Sci Bohemoslovaca. 2007;56:255–66.

    CAS  Google Scholar 

  77. Bennett ST, Todd JA. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet. 1996;30:343–70.

    Article  CAS  PubMed  Google Scholar 

  78. Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes. 2008;57:1433–7.

    Article  CAS  PubMed  Google Scholar 

  79. Lukacs K, Hosszufalusi N, Dinya E, Bakacs M, Madacsy L, Panczel P. The type 2 diabetes-associated variant in TCF7L2 is associated with latent autoimmune diabetes in adult Europeans and the gene effect is modified by obesity: a meta-analysis and an individual study. Diabetologia. 2012;55:689–93.

    Article  CAS  PubMed  Google Scholar 

  80. Szepietowska B, Moczulski D, Wawrusiewicz-Kurylonek N, Grzeszczak W, Gorska M, Szelachowska M. Transcription factor 7-like 2-gene polymorphism is related to fasting C peptide in latent autoimmune diabetes in adults (LADA). Acta Diabetologica. 2009; [Epub ahead of print].

  81. Zampetti S, Spoletini M, Petrone A, et al. Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD Study 5). Diabet Med J Br Diabet Assoc. 2010;27:701–4.

    Article  CAS  Google Scholar 

  82. Bakhtadze E, Cervin C, Lindholm E, et al. Common variants in the TCF7L2 gene help to differentiate autoimmune from non-autoimmune diabetes in young (15–34 years) but not in middle-aged (40–59 years) diabetic patients. Diabetologia. 2008;51:2224–32.

    Article  CAS  PubMed  Google Scholar 

  83. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383:1084–94.

    Article  PubMed  Google Scholar 

  84. Grant SF, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults? Endocr Rev. 2010;31:183–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Kevin J. Basile, Vanessa C. Guy, Stanley Schwartz, and Struan F.A. Grant report grants from the National Institutes of Health during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Struan F. A. Grant.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basile, K.J., Guy, V.C., Schwartz, S. et al. Overlap of Genetic Susceptibility to Type 1 Diabetes, Type 2 Diabetes, and Latent Autoimmune Diabetes in Adults. Curr Diab Rep 14, 550 (2014). https://doi.org/10.1007/s11892-014-0550-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0550-9

Keywords

Navigation