Skip to main content

Advertisement

Log in

Behavioral Risk Factors and Risk of Early-Onset Colorectal Cancer: Review of the Mechanistic and Observational Evidence

  • Nutrition and Nutritional Interventions in Colorectal Cancer (K Wu, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of the Review

The goal of this review is to summarize recent evidence linking behavioral risk factors to early-onset colorectal cancer (EO-CRC) as the incidence continues to rise by 2% annually in the USA. The potential mechanisms linking these risk factors to EO-CRC are also discussed.

Recent Findings

Obesity and sedentary behavior have been associated with an increased risk of EO-CRC in women through a large cohort study, while the data is inconclusive for men. Diabetes was also associated with an increased risk of EO-CRC in a large Swedish cohort study. While the evidence for metabolic syndrome and diet comes from cross-sectional studies, they still point to an association with EO-CRC. The mechanisms underlying these risk factors include inflammation, gut dysbiosis, and aberrant mitogenic signaling.

Summary

The etiology of EO-CRC likely involves a multifactorial mechanism that will require a multidisciplinary approach. Existing consortia and new data harmonization of multiple studies will be useful in re-evaluating the role of established lifestyle/genetic risk factors of CRC in EO-CRC. Future investigations should prospectively collect information on exposures and biospecimens, particularly during early life, to further elucidate risk factors and contributors to the rising incidence of EO-CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64. https://doi.org/10.3322/caac.21601This study highlights the increasing incidence of early-onset colorectal cancer in the Unites States' population.

  2. Loomans-Kropp HA, Umar A. Increasing incidence of colorectal cancer in young adults. J Cancer Epidemiol. 2019;2019:9841295.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murphy CC, Singal AG, Baron JA, Sandler RS. Decrease in Incidence of young-onset colorectal cancer before recent increase. Gastroenterology. 2018;155(6):1716–9 e4.

    Article  PubMed  Google Scholar 

  4. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3(4):464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brenner DR, Heer E, Sutherland RL, Ruan Y, Tinmouth J, Heitman SJ, et al. National trends in colorectal cancer incidence among older and younger adults in Canada. JAMA Netw Open. 2019;2(7):e198090.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Araghi M, Soerjomataram I, Bardot A, Ferlay J, Cabasag CJ, Morrison DS, et al. Changes in colorectal cancer incidence in seven high-income countries: a population-based study. Lancet Gastroenterol Hepatol. 2019;4(7):511–8.

    Article  PubMed  Google Scholar 

  7. Chambers AC, Dixon SW, White P, Williams AC, Thomas MG, Messenger DE. Demographic trends in the incidence of young-onset colorectal cancer: a population-based study. Br J Surg. 2020;107(5):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vuik FE, Nieuwenburg SA, Bardou M, Lansdorp-Vogelaar I, Dinis-Ribeiro M, Bento MJ, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019;68(10):1820–6.

    Article  PubMed  Google Scholar 

  9. Chung RY, Tsoi KKF, Kyaw MH, Lui AR, Lai FTT, Sung JJ. A population-based age-period-cohort study of colorectal cancer incidence comparing Asia against the West. Cancer Epidemiol. 2019;59:29–36.

    Article  PubMed  Google Scholar 

  10. Katsidzira L, Gangaidzo I, Thomson S, Rusakaniko S, Matenga J, Ramesar R. The shifting epidemiology of colorectal cancer in sub-Saharan Africa. Lancet Gastroenterol Hepatol. 2017;2(5):377–83.

  11. Gabriel E, Attwood K, Al-Sukhni E, Erwin D, Boland P, Nurkin S. Age-related rates of colorectal cancer and the factors associated with overall survival. J Gastrointest Oncol. 2018;9(1):96–110.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alvaro E, Cano JM, Garcia JL, Brandariz L, Olmedillas-Lopez S, Arriba M, et al. Clinical and molecular comparative study of colorectal cancer based on age-of-onset and tumor location: two main criteria for subclassifying colorectal cancer. Int J Mol Sci. 2019;20(4):968.

    Article  CAS  PubMed Central  Google Scholar 

  13. Yeo H, Betel D, Abelson JS, Zheng XE, Yantiss R, Shah MA. Early-onset colorectal cancer is distinct from traditional colorectal cancer. Clin Colorectal Cancer. 2017;16(4):293–9 e6.

    Article  PubMed  Google Scholar 

  14. Siegel RL, Jakubowski CD, Fedewa SA, Davis A, Azad NS. Colorectal cancer in the young: epidemiology, prevention, management. Am Soc Clin Oncol Educ Book. 2020;40(40):1–14.

    PubMed  Google Scholar 

  15. Pan HY, Walker GV, Grant SR, Allen PK, Jiang J, Guadagnolo BA, et al. Insurance status and racial disparities in cancer-specific mortality in the United States: a population-based analysis. Cancer Epidemiol Biomark Prev. 2017;26(6):869–75.

    Article  Google Scholar 

  16. Sineshaw HM, Ng K, Flanders WD, Brawley OW, Jemal A. Factors that contribute to differences in survival of black vs white patients with colorectal cancer. Gastroenterology. 2018;154(4):906–15 e7.

    Article  PubMed  Google Scholar 

  17. Murphy CC, Wallace K, Sandler RS, Baron JA. Racial disparities in incidence of young-onset colorectal cancer and patient survival. Gastroenterology. 2019;156(4):958–65.

    Article  PubMed  Google Scholar 

  18. Fass OZ, Poels KE, Qian Y, Zhong H, Liang PS. Demographics predict stage III/IV colorectal cancer in individuals under age 50. J Clin Gastroenterol. 2020;54:714–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Holowatyj AN, Ruterbusch JJ, Rozek LS, Cote ML, Stoffel EM. Racial/ethnic disparities in survival among patients with young-onset colorectal cancer. J Clin Oncol. 2016;34(18):2148–56. https://doi.org/10.1200/JCO.2015.65.0994This observational study highlights the racial disparities that exist in the age and stage of diagnosis and cancer-specific survival.

  20. Lowery JT, Ahnen DJ, Schroy PC 3rd, Hampel H, Baxter N, Boland CR, et al. Understanding the contribution of family history to colorectal cancer risk and its clinical implications: a state-of-the-science review. Cancer. 2016;122(17):2633–45.

    Article  PubMed  Google Scholar 

  21. Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;153(1):307–23.

    Article  PubMed  Google Scholar 

  22. Wolf AMD, Fontham ETH, Church TR, Flowers CR, Guerra CE, LaMonte SJ, et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J Clin. 2018;68(4):250–81.

    Article  PubMed  Google Scholar 

  23. Meester RGS, Peterse EFP, Knudsen AB, de Weerdt AC, Chen JC, Lietz AP, et al. Optimizing colorectal cancer screening by race and sex: microsimulation analysis II to inform the American Cancer Society colorectal cancer screening guideline. Cancer. 2018;124(14):2974–85.

    Article  PubMed  Google Scholar 

  24. Peterse EFP, Meester RGS, Siegel RL, Chen JC, Dwyer A, Ahnen DJ, et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline. Cancer. 2018;124(14):2964–73.

    Article  PubMed  Google Scholar 

  25. Richman I, Asch SM, Bhattacharya J, Owens DK. Colorectal cancer screening in the era of the affordable care act. J Gen Intern Med. 2016;31(3):315–20.

    Article  PubMed  Google Scholar 

  26. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, et al. Colorectal cancer incidence patterns in the United States, 1974-2013. J Natl Cancer Inst. 2017;109(8):djw322.

    PubMed Central  Google Scholar 

  27. Kuh D, Ben-Shlomo Y, Lynch J, Hallqvist J, Power C. Life course epidemiology. J Epidemiol Community Health. 2003;57(10):778–83.

  28. Abar L, Vieira AR, Aune D, Sobiecki JG, Vingeliene S, Polemiti E, et al. Height and body fatness and colorectal cancer risk: an update of the WCRF-AICR systematic review of published prospective studies. Eur J Nutr. 2018;57(5):1701–20.

    Article  PubMed  Google Scholar 

  29. Park SY, Boushey CJ, Wilkens LR, Haiman CA, Le Marchand L. High-quality diets associate with reduced risk of colorectal cancer: analyses of diet quality indexes in the multiethnic cohort. Gastroenterology. 2017;153(2):386–94 e2.

    Article  PubMed  Google Scholar 

  30. Ma Y, Yang W, Song M, Smith-Warner SA, Yang J, Li Y, et al. Type 2 diabetes and risk of colorectal cancer in two large U.S. prospective cohorts. Br J Cancer. 2018;119(11):1436–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Kort S, Masclee AAM, Sanduleanu S, Weijenberg MP, van Herk-Sukel MPP, Oldenhof NJJ, et al. Higher risk of colorectal cancer in patients with newly diagnosed diabetes mellitus before the age of colorectal cancer screening initiation. Sci Rep. 2017;7:46527.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB, Maisonneuve P. Smoking and colorectal cancer: a meta-analysis. JAMA. 2008;300(23):2765–78.

    Article  CAS  PubMed  Google Scholar 

  33. Parajuli R, Bjerkaas E, Tverdal A, Le Marchand L, Weiderpass E, Gram IT. Smoking increases rectal cancer risk to the same extent in women as in men: results from a Norwegian cohort study. BMC Cancer. 2014;14:321.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keum N, Cao Y, Oh H, Smith-Warner SA, Orav J, Wu K, et al. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk. Int J Cancer. 2016;138(9):2109–17.

    Article  CAS  PubMed  Google Scholar 

  35. Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol. 2017;18(8):e457–e71.

    Article  PubMed  Google Scholar 

  36. (NCD-RisC) NRFC. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.

    Article  Google Scholar 

  37. Dai Z, Xu YC, Niu L. Obesity and colorectal cancer risk: a meta-analysis of cohort studies. World J Gastroenterol. 2007;13(31):4199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nimptsch K, Giovannucci E, Willett WC, Fuchs CS, Wei EK, Wu K. Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev Res (Phila). 2011;4(10):1710–8.

    Article  Google Scholar 

  39. Zhang X, Wu K, Giovannucci EL, Ma J, Colditz GA, Fuchs CS, et al. Early life body fatness and risk of colorectal cancer in u.s. Women and men-results from two large cohort studies. Cancer Epidemiol Biomark Prev. 2015;24(4):690–7.

    Article  Google Scholar 

  40. Hidayat K, Yang CM, Shi BM. Body fatness at an early age and risk of colorectal cancer. Int J Cancer. 2018;142(4):729–40.

    Article  CAS  PubMed  Google Scholar 

  41. •• Liu PH, Wu K, Ng K, Zauber AG, Nguyen LH, Song M, et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 2019;5(1):37–44. https://doi.org/10.1001/jamaoncol.2018.4280This is one of the largest prospective cohort studies that demonstrated that mid- and early adulthood obesity was independently associated with early-onset colorectal cancer in women.

  42. Jung YS, Ryu S, Chang Y, Yun KE, Park JH, Kim HJ, et al. Risk factors for colorectal neoplasia in persons aged 30 to 39 years and 40 to 49 years. Gastrointest Endosc. 2015;81(3):637–45 e7.

    Article  PubMed  Google Scholar 

  43. Kim JY, Jung YS, Park JH, Kim HJ, Cho YK, Sohn CI, et al. Different risk factors for advanced colorectal neoplasm in young adults. World J Gastroenterol. 2016;22(13):3611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanford NN, Giovannucci EL, Ahn C, Dee EC, Mahal BA. Obesity and younger versus older onset colorectal cancer in the United States, 1998-2017. J Gastrointest Oncol. 2020;11(1):121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Syed AR, Thakkar P, Horne ZD, Abdul-Baki H, Kochhar G, Farah K, et al. Old vs new: risk factors predicting early onset colorectal cancer. World J Gastrointest Oncol. 2019;11(11):1011–20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hussan H, Patel A, Le Roux M, Cruz-Monserrate Z, Porter K, Clinton SK, et al. Rising incidence of colorectal cancer in young adults corresponds with increasing surgical resections in obese patients. Clin Transl Gastroenterol. 2020;11(4):e00160.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Low EE, Demb J, Liu L, Earles A, Bustamante R, Williams CD, et al. Risk Factors for early-onset colorectal cancer. Gastroenterology. 2020.

  48. Gausman V, Dornblaser D, Anand S, Hayes RB, O'Connell K, Du M, et al. Risk factors associated with early-onset colorectal cancer. Clin Gastroenterol Hepatol. 2019;18(12):2752–2759.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siegel RL, Medhanie GA, Fedewa SA, Jemal A. State variation in early-onset colorectal cancer in the United States, 1995-2015. J Natl Cancer Inst. 2019;111(10):1104–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 Through 2013-2014. JAMA. 2016;315(21):2292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kompella P, Vasquez KM. Obesity and cancer: a mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog. 2019;58(9):1531–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Zazzo E, Polito R, Bartollino S, Nigro E, Porcile C, Bianco A, et al. Adiponectin as link factor between adipose tissue and cancer. Int J Mol Sci. 2019;20(4):839.

    Article  CAS  PubMed Central  Google Scholar 

  53. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107(4):1183–8.

    Article  CAS  PubMed  Google Scholar 

  54. Wang W, Yang J, Zhang J, Wang Y, Hwang SH, Qi W, et al. Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A. 2018;115(20):5283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Yang J, Wang W, Sanidad KZ, Cinelli MA, Wan D, et al. Soluble epoxide hydrolase is an endogenous regulator of obesity-induced intestinal barrier dysfunction and bacterial translocation. Proc Natl Acad Sci U S A. 2020;117(15):8431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528. https://doi.org/10.1038/ncomms7528This translational study shows that cancer-free participants with a high waist-hip ratio had a similar gut microbiome as participants with colorectal cancer, providing evidence that obesity is associated with a dysbiosis associated with colorectal cancer.

  57. Tarashi S, Siadat SD, Ahmadi Badi S, Zali M, Biassoni R, Ponzoni M, et al. Gut bacteria and their metabolites: which one is the defendant for colorectal cancer? Microorganisms. 2019;7(11):561.

    Article  CAS  PubMed Central  Google Scholar 

  58. Crujeiras AB, Morcillo S, Diaz-Lagares A, Sandoval J, Castellano-Castillo D, Torres E, et al. Identification of an episignature of human colorectal cancer associated with obesity by genome-wide DNA methylation analysis. Int J Obes. 2019;43(1):176–88.

    Article  CAS  Google Scholar 

  59. Castellano-Castillo D, Morcillo S, Crujeiras AB, Sanchez-Alcoholado L, Clemente-Postigo M, Torres E, et al. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer. 2019;19(1):93.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607.

    Article  PubMed  Google Scholar 

  62. Vu HT, Ufere N, Yan Y, Wang JS, Early DS, Elwing JE. Diabetes mellitus increases risk for colorectal adenomas in younger patients. World J Gastroenterol. 2014;20(22):6946–52.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stocks T, Lukanova A, Johansson M, Rinaldi S, Palmqvist R, Hallmans G, et al. Components of the metabolic syndrome and colorectal cancer risk; a prospective study. Int J Obes. 2008;32(2):304–14.

    Article  CAS  Google Scholar 

  64. • Ali Khan U, Fallah M, Tian Y, Sundquist K, Sundquist J, Brenner H, et al. Personal history of diabetes as important as family history of colorectal cancer for risk of colorectal cancer: a nationwide cohort study. Am J Gastroenterol. 2020. https://doi.org/10.14309/ajg.0000000000000669This large nationwide cohort study from Sweden showed that diabetes prior to age 50, in the absence of family history, significantly increases the rsk of early-onset colorectal cancer.

  65. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. JAMA. 2014;312(12):1218–26.

    Article  CAS  PubMed  Google Scholar 

  66. Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280(6):4617–26.

    Article  CAS  PubMed  Google Scholar 

  67. Guo X, Dai X, Ni J, Cao N, Yang G, Xue J, et al. High concentration of sugars is genotoxic to folate-deficient cells. Mutat Res. 2019;814:15–22.

    Article  CAS  PubMed  Google Scholar 

  68. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067–72.

    Article  CAS  PubMed  Google Scholar 

  69. Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19(12):734–46.

    Article  CAS  PubMed  Google Scholar 

  70. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.

    Article  CAS  PubMed  Google Scholar 

  71. • Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. https://doi.org/10.1038/nature11450This translational study shows that type 2 diabetes is associated with decreased microbes capable of generating butyrate, a short-chained fatty acid, which is mucosal-protective in the colon.

  72. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6(2):320–9.

    Article  CAS  PubMed  Google Scholar 

  73. Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  74. Del Puerto-Nevado L, Minguez P, Corton M, Solanes-Casado S, Prieto I, Mas S, et al. Molecular evidence of field cancerization initiated by diabetes in colon cancer patients. Mol Oncol. 2019;13(4):857–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia associated metabolic and molecular alterations in cancer risk, progression, treatment, and mortality. Cancers (Basel). 2019;11(9):1402.

    Article  CAS  Google Scholar 

  76. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60.

    Article  CAS  PubMed  Google Scholar 

  77. Hopkins BD, Goncalves MD, Cantley LC. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol. 2020;16(5):276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28.

    Article  CAS  PubMed  Google Scholar 

  79. Kari FW, Dunn SE, French JE, Barrett JC. Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J Nutr Health Aging. 1999;3(2):92–101.

    CAS  PubMed  Google Scholar 

  80. Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A, et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res. 2018;24(5):1062–72.

    Article  CAS  PubMed  Google Scholar 

  81. Sun J, Khalid S, Rozakis-Adcock M, Fantus IG, Jin T. P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene. 2009;28(35):3132–44.

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez N, Prieto I, Del Puerto-Nevado L, Portal-Nunez S, Ardura JA, Corton M, et al. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget. 2017;8(11):18456–85.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nagel JM, Staffa J, Renner-Muller I, Horst D, Vogeser M, Langkamp M, et al. Insulin glargine and NPH insulin increase to a similar degree epithelial cell proliferation and aberrant crypt foci formation in colons of diabetic mice. Horm Cancer. 2010;1(6):320–30.

    Article  CAS  PubMed  Google Scholar 

  84. Yang L, Cao C, Kantor ED, Nguyen LH, Zheng X, Park Y, et al. Trends in sedentary behavior among the US population, 2001-2016. JAMA. 2019;321(16):1587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.

    Article  PubMed  Google Scholar 

  86. Ma P, Yao Y, Sun W, Dai S, Zhou C. Daily sedentary time and its association with risk for colorectal cancer in adults: a dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore). 2017;96(22):e7049.

    Article  Google Scholar 

  87. • Nguyen LH, Liu PH, Zheng X, Keum N, Zong X, Li X, et al. Sedentary behaviors, TV viewing time, and risk of young-onset colorectal cancer. JNCI Cancer Spectr. 2018;2(4):pky073. https://doi.org/10.1093/jncics/pky073This is the first large, prospective cohort study to show that TV viewing time, a surrogate for sedentary behavior, was independently associated with an increased risk of early-onset colorectal cancer, and in particular rectal cancer, in women.

  88. van de Vegte YJ, Said MA, Rienstra M, van der Harst P, Verweij N. Genome-wide association studies and Mendelian randomization analyses for leisure sedentary behaviours. Nat Commun. 2020;11(1):1770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics. 2009;124(3):e362–70.

    Article  PubMed  Google Scholar 

  90. Slattery ML. Physical activity and colorectal cancer. Sports Med. 2004;34(4):239–52.

    Article  PubMed  Google Scholar 

  91. Henson J, Yates T, Edwardson CL, Khunti K, Talbot D, Gray LJ, et al. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS One. 2013;8(10):e78350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Helmerhorst HJ, Wijndaele K, Brage S, Wareham NJ, Ekelund U. Objectively measured sedentary time may predict insulin resistance independent of moderate- and vigorous-intensity physical activity. Diabetes. 2009;58(8):1776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.

    Article  PubMed  Google Scholar 

  94. • Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M, Montalvo-Lominchar MG, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12(2):e0171352. https://doi.org/10.1371/journal.pone.0171352. This observational and translational study showed that prolonged sitting is associated with reduced microbial diversity. While physical activity alone didn't increase biodiversity, interrupting sedentary behavior was associated with increased biodiversity.

  95. Ortiz-Alvarez L, Xu H, Martinez-Tellez B. Influence of exercise on the human gut microbiota of healthy adults: a systematic review. Clin Transl Gastroenterol. 2020;11(2):e00126.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Castellanos N, Diez GG, Antunez-Almagro C, Bressa C, Bailen M, Gonzalez-Soltero R, et al. Key Bacteria in the gut microbiota network for the transition between sedentary and active lifestyle. Microorganisms. 2020;8(5):785.

    Article  CAS  PubMed Central  Google Scholar 

  98. Sung H, Siegel RL, Torre LA, Pearson-Stuttard J, Islami F, Fedewa SA, et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin. 2019;69(2):88–112.

    PubMed  Google Scholar 

  99. Martinez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6(3):e009892.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nimptsch K, Malik VS, Fung TT, Pischon T, Hu FB, Willett WC, et al. Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. Int J Cancer. 2014;134(10):2458–67.

    Article  CAS  PubMed  Google Scholar 

  101. Rosato V, Bosetti C, Levi F, Polesel J, Zucchetto A, Negri E, et al. Risk factors for young-onset colorectal cancer. Cancer Causes Control. 2013;24(2):335–41.

    Article  PubMed  Google Scholar 

  102. Glover M, Mansoor E, Panhwar M, Parasa S, Cooper GS. Epidemiology of colorectal cancer in average risk adults 20-39 years of age: a population-based national study. Dig Dis Sci. 2019;64(12):3602–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Francescangeli F, De Angelis ML, Zeuner A. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients. 2019;11(12):2936.

    Article  PubMed Central  Google Scholar 

  104. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2):322–40.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Guo S, Li J, Bao W, Zhang P, Huang Y, et al. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development. FEBS Open Bio. 2019;9(12):2117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Segata N. Gut microbiome: westernization and the disappearance of intestinal diversity. Curr Biol. 2015;25(14):R611–3.

    Article  CAS  PubMed  Google Scholar 

  107. • O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://doi.org/10.1038/ncomms7342. This study showed that two weeks of low-fat high-fiber diet decreases colonic mucosal hyperplasia and inflammation and increases bacteria capable of creating mucosal protective butyrate.

  108. Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6(2):41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  109. • Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658–68. https://doi.org/10.1016/j.cmet.2015.07.026. This translational study shows that, in the context of a high fat diet, the gut microbiota has far reaching consequences and can lead to inflammatory changes in fat and insulin resistance.

  110. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW, Muller M, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A. 2015;112(32):10038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H, Gerbaba TK, et al. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology. 2020;158(5):1313–25.

    Article  CAS  PubMed  Google Scholar 

  113. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414–27.

    Article  CAS  PubMed  Google Scholar 

  115. Elmen L, Zlamal JE, Scott DA, Lee RB, Chen DJ, Colas AR, et al. Dietary emulsifier sodium stearoyl lactylate alters gut microbiota in vitro and inhibits bacterial butyrate producers. Front Microbiol. 2020;11:892.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Montgomery M, Srinivasan A. Epigenetic gene regulation by dietary compounds in cancer prevention. Adv Nutr. 2019;10(6):1012–28.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Solis-Urra P, Cristi-Montero C, Romero-Parra J, Zavala-Crichton JP, Saez-Lara MJ, Plaza-Diaz J. Passive commuting and higher sedentary time is associated with vitamin d deficiency in adult and older women: results from Chilean National Health Survey 2016(-)2017. Nutrients. 2019;11(2):300.

    Article  CAS  PubMed Central  Google Scholar 

  118. Yin L, Grandi N, Raum E, Haug U, Arndt V, Brenner H. Meta-analysis: longitudinal studies of serum vitamin D and colorectal cancer risk. Aliment Pharmacol Ther. 2009;30(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  119. Akimoto N, Ugai T, Zhong R, Hamada T, Fujiyoshi K, Giannakis M, et al. Rising incidence of early-onset colorectal cancer - a call to action. Nat Rev Clin Oncol. 2020;8(4):230–43.

    Article  Google Scholar 

  120. Zhang Q, Berger FG, Love B, Banister CE, Murphy EA, Hofseth LJ. Maternal stress and early-onset colorectal cancer. Med Hypotheses. 2018;121:152–9.

    Article  PubMed  Google Scholar 

  121. • Cao-Lei L, Dancause KN, Elgbeili G, Massart R, Szyf M, Liu A, et al. DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13(1/2) years: Project Ice Storm. Epigenetics. 2015;10(8):749–61. https://doi.org/10.1080/15592294.2015.1063771This study shows that prenatal exposures to stress can have an epigenetic impact on offsprings, leading to increased risk of obesity in childhood.

  122. Dancause KN, Veru F, Andersen RE, Laplante DP, King S. Prenatal stress due to a natural disaster predicts insulin secretion in adolescence. Early Hum Dev. 2013;89(9):773–6.

    Article  CAS  PubMed  Google Scholar 

  123. Schulfer AF, Battaglia T, Alvarez Y, Bijnens L, Ruiz VE, Ho M, et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol. 2018;3(2):234–42.

    Article  CAS  PubMed  Google Scholar 

  124. Stokholm J, Schjorring S, Pedersen L, Bischoff AL, Folsgaard N, Carson CG, et al. Prevalence and predictors of antibiotic administration during pregnancy and birth. PLoS One. 2013;8(12):e82932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Cao Y, Wu K, Mehta R, Drew DA, Song M, Lochhead P, et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut. 2018;67(4):672–8.

    CAS  PubMed  Google Scholar 

  126. Song M, Nguyen LH, Emilsson L, Chan AT, Ludvigsson JF. Antibiotic use associated with risk of colorectal polyps in a nationwide study. Clin Gastroenterol Hepatol. 2020.

  127. Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Curhan GC, Fuchs CS. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA. 2005;294(8):914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Krigel A, Zhou M, Terry MB, Kastrinos F, Lebwohl B. Symptoms and demographic factors associated with early-onset colorectal neoplasia among individuals undergoing diagnostic colonoscopy. Eur J Gastroenterol Hepatol. 2020;32(7):821–6.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by US National Institutes of Health (NIH) grant P30CA09182 and R37CA246175. Dr. Otegbeye was supported by T32CA009621. Dr. Fritz was supported by T32 DK007130. Dr. Liao was supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Cao.

Ethics declarations

Conflict of Interest

Radhika Smith declares no potential conflicts of interest. Ebunoluwa Otegbeye reports grants from the National Cancer Institute, during the conduct of the study. Cassandra Fritz reports grants from the National Institute of Diabetes and Digestive Kidney Diseases, during the conduct of the study. Jingwen Liao reports grants from the China Scholarship Council, outside the submitted work. Yin Cao reports grants from P30CA09182 and R37CA246175, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition and Nutritional Interventions in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otegbeye, E.E., Fritz, C.D., Liao, J. et al. Behavioral Risk Factors and Risk of Early-Onset Colorectal Cancer: Review of the Mechanistic and Observational Evidence. Curr Colorectal Cancer Rep 17, 43–53 (2021). https://doi.org/10.1007/s11888-021-00465-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-021-00465-8

Keywords

Navigation