Skip to main content

Advertisement

Log in

Genetic Counseling in the Adult with Congenital Heart Disease: What is the Role?

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

New discoveries using high-resolution methods for detecting genetic aberrations indicate that the genetic contribution to congenital heart disease has been significantly underestimated in the past. DNA diagnostics have become more accessible and genetic test results are increasingly being used to guide clinical management. Adult congenital heart disease specialists seeking to counsel adults with congenital heart disease about the genetic aspects of their condition face the challenge of keeping abreast of new genetic techniques and discoveries. The emphasis of this review is on the genetic basis of structural cardiovascular defects. A framework for identifying adult congenital heart disease patients most likely to benefit from genetic testing is suggested, along with a summary of current techniques for genetic testing. The clinical and ethical challenges associated with genetic counseling are highlighted. Finally, emerging technologies and future directions in genetics and adult congenital heart disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Marelli AJ, Mackie AS, Ionescu-Ittu R, et al. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.

    Article  PubMed  Google Scholar 

  2. Epstein JA, Franklin H. Epstein lecture. Cardiac development and implications for heart disease. N Engl J Med. 2010;363:1638–47.

    Article  PubMed  CAS  Google Scholar 

  3. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238:97–109.

    Article  PubMed  CAS  Google Scholar 

  4. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128:3179–88.

    PubMed  CAS  Google Scholar 

  5. Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010;90:1–41.

    Article  PubMed  Google Scholar 

  6. Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005;6:826–35.

    Article  PubMed  CAS  Google Scholar 

  7. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336:137–44.

    Article  PubMed  CAS  Google Scholar 

  8. Liao J, Kochilas L, Nowotschin S, et al. Full spectrum of malformations in velo-cardio-facial syndrome/digeorge syndrome mouse models by altering tbx1 dosage. Hum Mol Genet. 2004;13:1577–85.

    Article  PubMed  CAS  Google Scholar 

  9. Merscher S, Funke B, Epstein JA, et al. Tbx1 is responsible for cardiovascular defects in velo-cardio-facial/digeorge syndrome. Cell. 2001;104:619–29.

    Article  PubMed  CAS  Google Scholar 

  10. Yagi H, Furutani Y, Hamada H, et al. Role of tbx1 in human del22q11.2 syndrome. Lancet. 2003;362:1366–73.

    Article  PubMed  CAS  Google Scholar 

  11. Garg V, Kathiriya IS, Barnes R, et al. Gata4 mutations cause human congenital heart defects and reveal an interaction with tbx5. Nature. 2003;424:443–7.

    Article  PubMed  CAS  Google Scholar 

  12. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor nkx2-5. Science. 1998;281:108–11.

    Article  PubMed  CAS  Google Scholar 

  13. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407:221–6.

    Article  PubMed  CAS  Google Scholar 

  14. Yuasa S, Onizuka T, Shimoji K, et al. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ Res. 2010;106:1083–91.

    Article  PubMed  CAS  Google Scholar 

  15. Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation. 1968;38:604–17.

    PubMed  CAS  Google Scholar 

  16. • Oyen N, Poulsen G, Boyd HA, et al. National time trends in congenital heart defects, Denmark, 1977–2005. Am Heart J. 2009;157:467–473 e461. This paper describes the national trends in prevalence of familial and sporadic congenital heart defects in the current era.

    Article  PubMed  Google Scholar 

  17. International Clearinghouse for Birth Defects Surveillance and Research Centre [ICBDSR CENTRE ICoBD, Rome, Italy]. Available at, http://www.icbdsr.org.

  18. Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the american heart association council on cardiovascular disease in the young: Endorsed by the american academy of pediatrics. Circulation. 2007;115:2995–3014.

    Article  PubMed  Google Scholar 

  19. Lammer EJ, Chen DT, Hoar RM, et al. Retinoic acid embryopathy. N Engl J Med. 1985;313:837–41.

    Article  PubMed  CAS  Google Scholar 

  20. Malik S, Cleves MA, Honein MA, et al. Maternal smoking and congenital heart defects. Pediatrics. 2008;121:e810–816.

    Article  PubMed  Google Scholar 

  21. Hobbs CA, Cleves MA, Karim MA, et al. Maternal folate-related gene environment interactions and congenital heart defects. Obstet Gynecol. 2010;116:316–22.

    Article  PubMed  Google Scholar 

  22. Botto LD, Lynberg MC, Erickson JD. Congenital heart defects, maternal febrile illness, and multivitamin use: a population-based study. Epidemiology. 2001;12:485–90.

    Article  PubMed  CAS  Google Scholar 

  23. Botto LD, Mulinare J, Erickson JD. Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am J Epidemiol. 2000;151:878–84.

    PubMed  CAS  Google Scholar 

  24. Scanlon KS, Ferencz C, Loffredo CA, et al. Preconceptional folate intake and malformations of the cardiac outflow tract. Baltimore-washington infant study group. Epidemiology. 1998;9:95–8.

    Article  PubMed  CAS  Google Scholar 

  25. Moore LL, Singer MR, Bradlee ML, et al. A prospective study of the risk of congenital defects associated with maternal obesity and diabetes mellitus. Epidemiology. 2000;11:689–94.

    Article  PubMed  CAS  Google Scholar 

  26. Ramos-Arroyo MA, Rodriguez-Pinilla E, Cordero JF. Maternal diabetes: the risk for specific birth defects. Eur J Epidemiol. 1992;8:503–8.

    Article  PubMed  CAS  Google Scholar 

  27. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimester exposure to ace inhibitors. N Engl J Med. 2006;354:2443–51.

    Article  PubMed  CAS  Google Scholar 

  28. Elia J, Katz IR, Simpson GM. Teratogenicity of psychotherapeutic medications. Psychopharmacol Bull. 1987;23:531–86.

    PubMed  CAS  Google Scholar 

  29. Momma K. Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol. 2010;105:1617–24.

    Article  PubMed  CAS  Google Scholar 

  30. Goldmuntz E, Geiger E, Benson DW. Nkx2.5 mutations in patients with tetralogy of Fallot. Circulation. 2001;104:2565–8.

    Article  PubMed  CAS  Google Scholar 

  31. Tomita-Mitchell A, Maslen CL, Morris CD, et al. Gata4 sequence variants in patients with congenital heart disease. J Med Genet. 2007;44:779–83.

    Article  PubMed  CAS  Google Scholar 

  32. • Greenway SC, Pereira AC, Lin JC, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41:931–935. This paper shows that a genome-wide search can help identify novel genetic variants associated with sporadic congenital heart defects.

    Article  PubMed  CAS  Google Scholar 

  33. Stevens KN, Hakonarson H, Kim CE, et al. Common variation in isl1 confers genetic susceptibility for human congenital heart disease. PLoS ONE. 2010;5:e10855.

    Article  PubMed  Google Scholar 

  34. Beauchesne LM, Warnes CA, Connolly HM, et al. Prevalence and clinical manifestations of 22q11.2 microdeletion in adults with selected conotruncal anomalies. J Am Coll Cardiol. 2005;45:595–8.

    Article  PubMed  CAS  Google Scholar 

  35. Cowan J, Morales A, Dagua J, Hershberger RE. Genetic testing and genetic counseling in cardiovascular genetic medicine: overview and preliminary recommendations. Congest Heart Fail. 2008;14:97–105.

    Article  PubMed  Google Scholar 

  36. Rivkees SA, Hager K, Hosono S, et al. A highly sensitive, high-throughput assay for the detection of turner syndrome. J Clin Endocrinol Metab. 2010;96:699–705.

    Article  PubMed  Google Scholar 

  37. McDonald-McGinn DM, Zackai EH. Genetic counseling for the 22q11.2 deletion. Dev Disabil Res Rev. 2008;14:69–74.

    Article  PubMed  Google Scholar 

  38. Pierpont ME, Basson CT, Benson Jr DW, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the american heart association congenital cardiac defects committee, council on cardiovascular disease in the young: endorsed by the american academy of pediatrics. Circulation. 2007;115:3015–38.

    Article  PubMed  Google Scholar 

  39. • Marelli A, Beauchesne L, Mital S, et al. Canadian cardiovascular society 2009 consensus conference on the management of adults with congenital heart disease: Introduction. Can J Cardiol. 2010;26:e65–69. This is a consensus statement providing an overview of the health burden, epidemiology, and genetic approaches to adults with CHD.

    Article  PubMed  Google Scholar 

  40. Jamieson CR, van der Burgt I, Brady AF, et al. Mapping a gene for noonan syndrome to the long arm of chromosome 12. Nat Genet. 1994;8:357–60.

    Article  PubMed  CAS  Google Scholar 

  41. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in sos1 cause noonan syndrome. Nat Genet. 2007;39:70–4.

    Article  PubMed  CAS  Google Scholar 

  42. Schubbert S, Zenker M, Rowe SL, et al. Germline kras mutations cause noonan syndrome. Nat Genet. 2006;38:331–6.

    Article  PubMed  CAS  Google Scholar 

  43. Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function sos1 mutations cause a distinctive form of noonan syndrome. Nat Genet. 2007;39:75–9.

    Article  PubMed  CAS  Google Scholar 

  44. Razzaque MA, Nishizawa T, Komoike Y, et al. Germline gain-of-function mutations in raf1 cause noonan syndrome. Nat Genet. 2007;39:1013–7.

    Article  PubMed  CAS  Google Scholar 

  45. Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-function raf1 mutations cause noonan and leopard syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–12.

    Article  PubMed  CAS  Google Scholar 

  46. Loeys BL, Dietz HC, Braverman AC, et al. The revised ghent nosology for the marfan syndrome. J Med Genet. 2010;47:476–85.

    Article  PubMed  CAS  Google Scholar 

  47. Prendiville TW, Barton LL, Thompson WR, et al. Heterotaxy syndrome: defining contemporary disease trends. Pediatr Cardiol. 2010;31:1052–8.

    Article  PubMed  Google Scholar 

  48. Dietz HC, Pyeritz RE. Mutations in the human gene for fibrillin-1 (fbn1) in the marfan syndrome and related disorders. Hum Mol Genet. 1995;4(Spec No):1799–809.

    PubMed  CAS  Google Scholar 

  49. Goldmuntz E, Driscoll DA, Emanuel BS, et al. Evaluation of potential modifiers of the cardiac phenotype in the 22q11.2 deletion syndrome. Birth Defects Res A Clin Mol Teratol. 2009;85:125–9.

    Article  PubMed  CAS  Google Scholar 

  50. Brassington AM, Sung SS, Toydemir RM, et al. Expressivity of holt-oram syndrome is not predicted by tbx5 genotype. Am J Hum Genet. 2003;73:74–85.

    Article  PubMed  CAS  Google Scholar 

  51. Nora JJ, Nora AH. Maternal transmission of congenital heart diseases: New recurrence risk figures and the questions of cytoplasmic inheritance and vulnerability to teratogens. Am J Cardiol. 1987;59:459–63.

    Article  PubMed  CAS  Google Scholar 

  52. Burn J, Brennan P, Little J, et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of british collaborative study. Lancet. 1998;351:311–6.

    Article  PubMed  CAS  Google Scholar 

  53. Whittemore R, Wells JA, Castellsague X. A second-generation study of 427 probands with congenital heart defects and their 837 children. J Am Coll Cardiol. 1994;23:1459–67.

    Article  PubMed  CAS  Google Scholar 

  54. Vause S, Thorne S, Clarke B. Preconceptual counseling for women with cardiac disease. In: Steer PJ, Gatzoulis MA, Baker P, ed. Heart disease and pregnancy. London: RCOG Press; 2006.

    Google Scholar 

  55. Oyen N, Poulsen G, Boyd HA, et al. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.

    Article  PubMed  Google Scholar 

  56. Emanuel R, Somerville J, Inns A, Withers R. Evidence of congenital heart disease in the offspring of parents with atrioventricular defects. Br Heart J. 1983;49:144–7.

    Article  PubMed  CAS  Google Scholar 

  57. Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease: An analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol. 2003;42:923–9.

    Article  PubMed  Google Scholar 

  58. Kearns WG, Pen R, Graham J, et al. Preimplantation genetic diagnosis and screening. Semin Reprod Med. 2005;23:336–47.

    Article  PubMed  CAS  Google Scholar 

  59. Maya I, Davidov B, Gershovitz L, et al. Diagnostic utility of array-based comparative genomic hybridization (acgh) in a prenatal setting. Prenat Diagn. 2010;30:1131–7.

    Article  PubMed  Google Scholar 

  60. Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol. 2007;110:687–94.

    Article  PubMed  Google Scholar 

  61. Evans MI, Wapner RJ. Invasive prenatal diagnostic procedures 2005. Semin Perinatol. 2005;29:215–8.

    Article  PubMed  Google Scholar 

  62. Allan L. Fetal cardiac scanning today. Prenat Diagn. 2010;30:639–43.

    Article  PubMed  Google Scholar 

  63. Powell KP, Hasegawa L, McWalter K. Expanding roles: a survey of public health genetic counselors. J Genet Couns. 2010;19:593–605.

    Article  PubMed  Google Scholar 

  64. Resta R, Biesecker BB, Bennett RL, et al. A new definition of genetic counseling: National society of genetic counselors’ task force report. J Genet Couns. 2006;15:77–83.

    Article  PubMed  Google Scholar 

  65. Canadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol. 2010;7:256–65.

    PubMed  CAS  Google Scholar 

  66. Canadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 2: treatment and management of patients. Nat Rev Cardiol. 2010;7:266–76.

    PubMed  CAS  Google Scholar 

  67. Hickey EJ, Mehta R, Elmi M, et al. Survival implications: hypertrophic cardiomyopathy in noonan syndrome. Congenit Heart Dis. 2011;6:41–7.

    Article  PubMed  Google Scholar 

  68. Bassett AS, Chow EW. Schizophrenia and 22q11.2 deletion syndrome. Curr Psychiatry Rep. 2008;10:148–57.

    Article  PubMed  Google Scholar 

  69. Billings PR. Genetic nondiscrimination. Nat Genet. 2005;37:559–60.

    Article  PubMed  CAS  Google Scholar 

  70. Javitt GH. Policy implications of genetic testing: not just for geneticists anymore. Adv Chron Kidney Dis. 2006;13:178–82.

    Article  Google Scholar 

  71. Rantanen E, Hietala M, Kristoffersson U, et al. What is ideal genetic counselling? A survey of current international guidelines. Eur J Hum Genet. 2008;16:445–52.

    Article  PubMed  Google Scholar 

  72. McGrath RJ, Laflamme DJ, Schwartz AP, et al. Access to genetic counseling for children with autism, down syndrome, and intellectual disabilities. Pediatrics. 2009;124 Suppl 4:S443–449.

    Article  PubMed  Google Scholar 

  73. van Langen IM, Birnie E, Schuurman E, et al. Preferences of cardiologists and clinical geneticists for the future organization of genetic care in hypertrophic cardiomyopathy: A survey. Clin Genet. 2005;68:360–8.

    Article  PubMed  Google Scholar 

  74. Bertola DR, Pereira AC, de Oliveira PS, et al. Clinical variability in a noonan syndrome family with a new ptpn11 gene mutation. Am J Med Genet A. 2004;130A:378–83.

    Article  PubMed  Google Scholar 

  75. Chen Y, Han ZQ, Yan WD, et al. A novel mutation in gata4 gene associated with dominant inherited familial atrial septal defect. J Thorac Cardiovasc Surg. 2010;140:684–7.

    Article  PubMed  CAS  Google Scholar 

  76. Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with gata4 or nkx2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005;135:47–52.

    PubMed  Google Scholar 

  77. Morris CA. Introduction: Williams syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:203–8.

    Article  PubMed  Google Scholar 

  78. Robinson PN, Booms P, Katzke S, et al. Mutations of fbn1 and genotype-phenotype correlations in marfan syndrome and related fibrillinopathies. Hum Mutat. 2002;20:153–61.

    Article  PubMed  CAS  Google Scholar 

  79. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: Closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet. 2007;8:639–46.

    Article  PubMed  CAS  Google Scholar 

  80. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–240.

    Article  PubMed  CAS  Google Scholar 

  81. Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096–101.

    Article  PubMed  CAS  Google Scholar 

  82. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.

    Article  PubMed  CAS  Google Scholar 

  83. Ng SB, Nickerson DA, Bamshad MJ, Shendure J. Massively parallel sequencing and rare disease. Hum Mol Genet. 2010;19:R119–124.

    Article  PubMed  CAS  Google Scholar 

  84. Tucker T, Marra M, Friedman JM. Massively parallel sequencing: The next big thing in genetic medicine. Am J Hum Genet. 2009;85:142–54.

    Article  PubMed  CAS  Google Scholar 

  85. Richards CS, Bale S, Bellissimo DB, et al. Acmg recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med. 2008;10:294–300.

    Article  PubMed  CAS  Google Scholar 

  86. Ashley EA, Butte AJ, Wheeler MT, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375:1525–35.

    Article  PubMed  CAS  Google Scholar 

  87. Guttmacher AE, Collins FS. Genomic medicine–a primer. N Engl J Med. 2002;347:1512–20.

    Article  PubMed  CAS  Google Scholar 

  88. Wessels MW, Willems PJ. Genetic factors in non-syndromic congenital heart malformations. Clin Genet. 2010;78:103–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Ms. Laura Burchill and Dr. Jodi Ann Swaby for their critical reviews of the article and insightful contributions.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Mital.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchill, L., Greenway, S., Silversides, C.K. et al. Genetic Counseling in the Adult with Congenital Heart Disease: What is the Role?. Curr Cardiol Rep 13, 347–355 (2011). https://doi.org/10.1007/s11886-011-0188-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-011-0188-z

Keywords

Navigation