Skip to main content
Log in

Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Several genome-wide association studies have linked novel loci to a wide range of cardiovascular phenotypes including low-density lipoprotein (LDL)-cholesterol, early onset myocardial infarction, coronary artery calcification, coronary artery stenosis, and abdominal aorta aneurysm. Especially, one locus, namely, 1p13.3, has attracted much attention. This locus harbors four candidate genes, CELSR2, PSRC1, MYBPHL, and SORT1. SORT1 encodes sortilin, a type I sorting receptor that has recently been implicated in LDL-cholesterol metabolism, VLDL secretion, PCSK9 secretion, and development of atherosclerotic lesions. Furthermore, sortilin also seems to be involved in the development of atherosclerosis, by mechanisms not directly involving LDL-cholesterol, but possibly resulting from the attenuated secretion of proinflammatory cytokines, such as IL6 and TNFα, which accompanies lack of sortilin in immune cells. Sortilin seems to play an important role in the development of cardiovascular disease and have functions beyond regulating LDL-cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The sortilin cytoplasmic tail conveys Golgi-endosome trafficking [43], and previous studies have suggested that sortilin binds a number of lysosomal enzymes in the biosynthetic pathway and mediates their transport to the lysosomes (e.g., [52]). However, other sortilin ligands like lipoprotein lipase are apparently not targeted directly from the TGN [37] to the lysosomes [53] and, notably, sortilin deficient mice show no signs of lysosomal storage disease. Whether sortilin actually serves in TGN-endosomal/lysosomal protein-transport is therefore still an open question.

  2. The sortilin-deficient mouse employed by Kjolby et al. expresses a truncated, misfolded version of sortilin which is incapable of ligand-linding and never leaves the ER. The mouse is therefore in effect a functional knockout [6, 56].

  3. Musunuru et al. [7] stated an almost 60 percent increase of total cholesterol in sortilin knockouts compared to wildtype animals, whereas Strong et al. [61••] reported a 20 percent decrease using the same sortili- deficient mice on Ldlr knockout background, which is in agreement with findings by Kjolby et al. [6].

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol. 2004;160:407–20.

    Article  PubMed  Google Scholar 

  2. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, et al. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem. 1997;272:3599–605.

    Article  CAS  PubMed  Google Scholar 

  4. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010;13:700–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12:213–23.

    Article  CAS  PubMed  Google Scholar 

  7. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschøn H, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19:310–8. The first paper to show that sortilin facilitates secretion of PCSK9, and that this affects the liver LDLR expression.

    Article  CAS  PubMed  Google Scholar 

  9. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet. 2008;371:483–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008;82:139–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008;6:e107.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41:56–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nakayama K, Bayasgalan T, Yamanaka K, Kumada M, Gotoh T, Utsumi N, et al. Large scale replication analysis of loci associated with lipid concentrations in a Japanese population. J Med Genet. 2009;46:370–4.

    Article  CAS  PubMed  Google Scholar 

  15. Muendlein A, Geller-Rhomberg S, Saely CH, Winder T, Sonderegger G, Rein P, et al. Significant impact of chromosomal locus 1p13.3 on serum LDL cholesterol and on angiographically characterized coronary atherosclerosis. Atherosclerosis. 2009;206:494–9.

    Article  CAS  PubMed  Google Scholar 

  16. Shirts BH, Hasstedt SJ, Hopkins PN, Hunt SC. Evaluation of the gene–age interactions in HDL cholesterol, LDL cholesterol, and triglyceride levels: the impact of the SORT1 polymorphism on LDL cholesterol levels is age dependent. Atherosclerosis. 2011;217:139–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Devaney JM, Thompson PD, Visich PS, Saltarelli WA, Gordon PM, Orkunoglu-Suer EF, et al. The 1p13.3 LDL (C)-associated locus shows large effect sizes in young populations. Pediatr Res. 2011;69:538–43.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Angelakopoulou A, Shah T, Sofat R, Shah S, Berry DJ, Cooper J, et al. Comparative analysis of genome-wide association studies signals for lipids, diabetes, and coronary heart disease: cardiovascular biomarker genetics collaboration. Eur Heart J. 2012;33:393–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Adeyemo A, Bentley AR, Meilleur KG, Doumatey AP, Chen G, Zhou J, et al. Transferability and fine mapping of genome-wide associated loci for lipids in African Americans. BMC Med Genet. 2012;13:88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, et al. A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS ONE. 2012;7:e37056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Arvind P, Nair J, Jambunathan S, Kakkar VV, Shanker J. CELSR2-PSRC1-SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort. J Cardiol. 2014;64:339–46.

    Article  PubMed  Google Scholar 

  22. Lee J-Y, Lee B-S, Shin D-J, Woo Park K, Shin Y-A, Joong Kim K, et al. A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 2013;58:120–6.

    Article  CAS  PubMed  Google Scholar 

  23. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–9.

    Article  CAS  PubMed  Google Scholar 

  24. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.

    Article  PubMed Central  Google Scholar 

  25. Wang AZ, Li L, Zhang B, Shen G-Q, Wang QK. Association of SNP rs17465637 on chromosome 1q41 and rs599839 on 1p13.3 with myocardial infarction in an American caucasian population. Ann Hum Genet. 2011;75:475–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jones GT, Bown MJ, Gretarsdottir S, Romaine SPR, Helgadottir A, Yu G, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22:2941–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. O’Donnell CJ, Kavousi M, Smith AV, Kardia SLR, Feitosa MF, Hwang S-J, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–64.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mortensen MB, Kjolby M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E, et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Investig. 2014;124:5317–22. First paper to show that lack of sortilin in bone marrow derived cells alone (e.g., T-cells and macrophages) attenuates the development of atherosclerosis.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Smith JG, Luk K, Schulz C-A, Engert JC, Do R, Hindy G, et al. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA. 2014;312:1764–71.

    Article  CAS  PubMed  Google Scholar 

  30. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature. 2004;427:843–8.

    Article  CAS  PubMed  Google Scholar 

  31. Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci. 2007;10:1449–57.

    Article  CAS  PubMed  Google Scholar 

  32. Shi J, Kandror KV. Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes. Dev Cell. 2005;9:99–108.

    Article  CAS  PubMed  Google Scholar 

  33. Wahe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, et al. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci. 2010;123:2502–11.

    Article  PubMed  Google Scholar 

  34. Herda S, Raczkowski F, Mittrücker H-W, Willimsky G, Gerlach K, Kühl AA, et al. The sorting receptor Sortilin exhibits a dual function in exocytic trafficking of interferon-γ and granzyme A in T cells. Immunity. 2012;37:854–66.

    Article  CAS  PubMed  Google Scholar 

  35. Quistgaard EM, Madsen P, Groftehauge MK, Nissen P, Petersen CM, Thirup SS. Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain. Nat Struct Mol Biol. 2009;16:96–8.

    Article  CAS  PubMed  Google Scholar 

  36. Quistgaard EM, Grøftehauge MK, Madsen P, Pallesen LT, Christensen B, Sørensen ES, et al. Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin. Protein Sci. 2014;23:1291–300.

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J Biol Chem. 1999;274:8832–6.

    Article  CAS  PubMed  Google Scholar 

  38. Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Olivecrona G. Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem. 2008;283:25920–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Carlo A-S, Gustafsen C, Mastrobuoni G, Nielsen MS, Burgert T, Hartl D, et al. The pro-neurotrophin receptor sortilin is a major neuronal apolipoprotein E receptor for catabolism of amyloid-β peptide in the brain. J Neurosci. 2013;33:358–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Baltes J, Larsen JV, Radhakrishnan K, Geumann C, Kratzke M, Petersen CM, et al. σ1B adaptin regulates adipogenesis by mediating the sorting of sortilin in adipose tissue. J Cell Sci. 2014;127:3477–87.

    Article  CAS  PubMed  Google Scholar 

  41. Larsen JV, Hansen M, Moller B, Madsen P, Scheller J, Nielsen M, et al. Sortilin facilitates signaling of ciliary neurotrophic factor and related helical type 1 cytokines targeting the gp130/leukemia inhibitory factor receptor beta heterodimer. Mol Cell Biol. 2010;30:4175–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68:654–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 2001;20:2180–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Cramer JF, Gustafsen C, Behrens MA, Oliveira CLP, Pedersen JS, Madsen P, et al. GGA autoinhibition revisited. Traffic. 2010;11:259–73.

    Article  CAS  PubMed  Google Scholar 

  45. Kim E, Lee Y, Lee H-J, Kim JS, Song B-S, Huh J-W, et al. Implication of mouse Vps26b-Vps29-Vps35 retromer complex in sortilin trafficking. Biochem Biophys Res Commun. 2010;403:167–71.

    Article  CAS  PubMed  Google Scholar 

  46. Canuel M, Lefrancois S, Zeng J, Morales CR. AP-1 and retromer play opposite roles in the trafficking of sortilin between the Golgi apparatus and the lysosomes. Biochem Biophys Res Commun. 2008;366:724–30.

    Article  CAS  PubMed  Google Scholar 

  47. Finan GM, Okada H, Kim T-W. BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin. J Biol Chem. 2011;286:12602–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Progida C, Nielsen MS, Koster G, Bucci C, Bakke O. Dynamics of Rab7b-dependent transport of sorting receptors. Traffic. 2012;13:1273–85.

    Article  CAS  PubMed  Google Scholar 

  49. Tauris J, Ellgaard L, Jacobsen C, Nielsen MS, Madsen P, Thøgersen HC, et al. The carboxy-terminal domain of the receptor-associated protein binds to the Vps10p domain of sortilin. FEBS Lett. 1998;429:27–30.

    Article  CAS  PubMed  Google Scholar 

  50. Mazella J, Zsürger N, Navarro V, Chabry J, Kaghad M, Caput D, et al. The 100-kDa neurotensin receptor is gp95/sortilin, a non-G-protein-coupled receptor. J Biol Chem. 1998;273:26273–6.

    Article  CAS  PubMed  Google Scholar 

  51. Munck Petersen C, Nielsen MS, Jacobsen C, Tauris J, Jacobsen L, Gliemann J, et al. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 1999;18:595–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 2003;22:6430–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, et al. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J Cell Sci. 2011 ed. 2011.

  54. Rabinowich L, Fishman S, Hubel E, Thurm T, Park W-J, Pewzner-Jung Y, et al. Sortilin deficiency improves the metabolic phenotype and reduces hepatic steatosis of mice subjected to diet-induced obesity. J Hepatol. 2015;62:175–81. Independent group investigating the full Sort1 KO mice (Exon 14 targeted), and find lower TG content in liver, as well as lower expression of Fas and Scd – genes involved in lipogenesis.

    Article  CAS  PubMed  Google Scholar 

  55. Han S, Liang C-P, Westerterp M, Senokuchi T, Welch CL, Wang Q, et al. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J Clin Investig. 2009;119:1029–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kjolby M. Sortilins in cardiovascular disease and diabetes. Aarhus University; 2011.

  57. Li J, Bi L, Hulke M, Li T. Fish oil and fenofibrate prevented phosphorylation-dependent hepatic sortilin 1 degradation in Western diet-fed mice. J Biol Chem. 2014;289:22437–49. Paper show that sortilin is expression in liver is affected by fish oils and fenofibrates. They also demonstrate regulated phosphorylation on cytoplasmic domain, which impacts sortilin turnover.

    Article  CAS  PubMed  Google Scholar 

  58. Bi L, Chiang JYL, Ding W-X, Dunn W, Roberts B, Li T. Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice. J Lipid Res. 2013;54:2754–62. In this paper it is shown that ceramide and palmitate directly affect sortilin expression in hepatic cell lines.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Zeng J, Racicott J, Morales CR. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp Cell Res. 2009;315:3112–24.

    Article  CAS  PubMed  Google Scholar 

  60. Ai D, Baez JM, Jiang H, Conlon DM, Hernandez-Ono A, Frank-Kamenetsky M, et al. Activation of ER stress and mTORC1 suppresses hepatic sortilin-1 levels in obese mice. J Clin Invest. 2012;122:1677–87. In this paper, a novel transcription factor is identified that partly regulates sortilin expression levels. There are also indications that diet influence sortilin expression in the liver.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Strong A, Ding Q, Edmondson AC, Millar JS, Sachs KV, Li X, et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J Clin Investig. 2012;122:2807–16. In this paper the LDL-catabolism is investigated in WT and Sort1 KO mice. Even though there is an apparant slower catabolism in Sort1 KO mice, they still exhibit lower plasma cholesterol and LDL-C levels, when compared to WT mice.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Patel KM, Strong A, Rader DJ. The liver-specific role of sortilin in VLDL secretion. Arterioscler Thromb Vasc Biol Am Heart Assoc. 2013;33:A444.

    Google Scholar 

  63. Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208:183–9.

    Article  CAS  PubMed  Google Scholar 

  64. Tveten K, Strøm TB, Cameron J, Berge KE, Leren TP. Mutations in the SORT1 gene are unlikely to cause autosomal dominant hypercholesterolemia. Atherosclerosis. 2012;225:370–5.

    Article  CAS  PubMed  Google Scholar 

  65. Canuel M, Sun X, Asselin M-C, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS ONE. 2013;8:e64145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31:785–91.

    Article  CAS  PubMed  Google Scholar 

  67. Leren TP. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014;237:76–81.

    Article  CAS  PubMed  Google Scholar 

  68. Klingenberg R, Gerdes N, Badeau RM, Gisterå A, Strodthoff D, Ketelhuth DFJ, et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Investig. 2013;123:1323–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are funded by The Danish Diabetes Academy supported by the Novo Nordisk Foundation (MFK), and The Lundbeck Foundation (MFK, CMP, MSN).

Compliance with Ethics Guidelines

Conflict of Interest

Mads Kjolby, Morten Schallburg Nielsen, and Claus Munck Petersen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Kjolby.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kjolby, M., Nielsen, M.S. & Petersen, C.M. Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Curr Atheroscler Rep 17, 18 (2015). https://doi.org/10.1007/s11883-015-0496-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-015-0496-7

Keywords

Navigation