Skip to main content
Log in

Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Impaired mucociliary clearance has been implicated in chronic upper and lower airway inflammatory diseases (i.e., allergic and non-allergic rhinitis, chronic rhinosinusitis with or without nasal polyps and asthma). How motile ciliary disorders (impaired ciliogenesis, ciliary beating and ultrastructural defects) are implicated in chronic airway inflammatory diseases is not fully understood. Elaboration of the role of motile ciliary disorders may serve as therapeutic targets for improving mucociliary clearance, thereby complementing contemporary disease management.

Recent Findings

We have summarized the manifestations of motile ciliary disorders and addressed the underlying associations with chronic airway inflammatory diseases. A panel of established and novel diagnostic tests and therapeutic interventions are outlined. Physicians should be vigilant in screening for motile ciliary disorders, particularly in patients with co-existing upper and lower airway inflammatory diseases.

Summary

Proper assessment and treatment of motile ciliary disorders may have added value to the management and prevention of chronic airway inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9:a028241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Grossan M. The saccharin test of nasal mucociliary function. Eye Ear Nose Throat Mon. 1975;54:415–7.

    PubMed  CAS  Google Scholar 

  3. Müller M, Konietzko N, Adam WE, Matthys H. Investigation of the mucociliary clearance by means of 99mTc-labelled sulfur colloid (author’s transl). Klin Wochenschr. 1975;53:815–22.

    Article  PubMed  Google Scholar 

  4. GBD 2016 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1345–422.

    Article  Google Scholar 

  5. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210.

    Article  Google Scholar 

  6. Hyde DM, Hamid Q, Irvin CG. Anatomy, pathology, and physiology of the tracheobronchial tree: emphasis on the distal airways. J Allergy Clin Immunol. 2009;124:S72–7.

    Article  PubMed  Google Scholar 

  7. • Wang DY, Li Y, Yan Y, Li C, Shi L. Upper airway stem cells: understanding the nose and role for future cell therapy. Curr Allergy Asthma Rep. 2015;15:490. This review summarized the role of airway stem cells in facilitating the understanding of the pathogenesis (including the respiratory cilia) of upper airway diseases.

    Article  PubMed  CAS  Google Scholar 

  8. Yaghi A, Dolovich MB. Airway epithelial cell cilia and obstructive disease. Cell. 2016;5:40.

    Article  CAS  Google Scholar 

  9. Ma J, Rubin BK, Voynow JA. Mucins, mucus and goblet cells. Chest. 2017;17:33080–5.

    Google Scholar 

  10. Tsang KW, Zheng L, Tipoe G. Ciliary assessments in bronchiectasis. Respirology. 2000;5:91–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lai Y, Chen B, Shi J, Palmer JN, Kennedy DW, Cohen NA. Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2011;128:1207–15.

    Article  PubMed  CAS  Google Scholar 

  12. • Li YY, Li CW, Chao SS, Yu FG, Yu XM, Liu J, et al. Impairment of cilia architecture and ciliogenesis in hyperplastic nasal epithelium from nasal polyps. J Allergy Clin Immunol. 2014;134:1282–92. This article elaborated the roles of three major ciliogenesis markers and their regulation of cilia growth in nasal polyps.

    Article  PubMed  Google Scholar 

  13. Gomperts BN, Gong-Cooper X, Hacklett BP. Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci. 2004;117:1329–37.

    Article  PubMed  CAS  Google Scholar 

  14. Franco I, Margaria JP, De Santis MC, Ranghino A, Monteyne D, Chiaravalli M, et al. Phosphoinositide 3-kinase-C2α regulates Polycystin-2 ciliary entry and protects against kidney cyst formation. J Am Soc Nephrol. 2016;27:1135–44.

    Article  PubMed  CAS  Google Scholar 

  15. Gerovac BJ, Valencia M, Baumlin N, Salathe M, Conner GE, Fregien NL. Submersion and hypoxia inhibit ciliated cell differentiation in a notch-dependent manner. Am J Respir Cell Mol Biol. 2014;51:516–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Papon JF, Coste A, Roudot-Thoraval F, Boucherat M, Roger G, Tamalet A, et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2010;35:1057–63.

    Article  PubMed  CAS  Google Scholar 

  17. Shoemark A, Hogg C. Electron microscopy of respiratory cilia. Thorax. 2013;68:190–1.

    Article  PubMed  Google Scholar 

  18. •• Shoemark A, Frost E, Dixon M, Ollosson S, Kilpin K, Patel M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2017;196:94–101. Validation of immunofluorescence imaging for ciliary ultrastructural markers in the diagnosis of primary cilia dyskinesia.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dougherty GW, Loges NT, Klinkenbusch JA, Olbrich H, Pennekamp P, Menchen T, et al. DNAH11 localization in the proximal region of respiratory cilia define distinct outer dynein arm complexes. Am J Respir Cell Mol Biol. 2016;55:213–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. • Frommer A, Hjeij R, Loges NT, Edelbusch C, Jahnke C, Raidt J, et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol. 2015;53:563–73. This article delineated how defects of the radial spoke proteins were correlated with primary ciliary dyskinesia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. •• Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49:1601090. Comprehensive analysis on how motile ciliary disorders should be diagnosed and managed.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chilvers MA, Rutman A, O’Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax. 2003;58:333–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Thomas B, Rutman A, O’Callaghan C. Disrupted ciliated epithelium shows slower ciliary beat frequency and increased dyskinesia. Eur Respir J. 2009;34:401–4.

    Article  PubMed  CAS  Google Scholar 

  24. Ho JC, Chan KN, Hu WH, Lam WK, Zheng L, Tipoe GL, et al. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cells. Am J Respir Crit Care Med. 2001;163:983–8.

    Article  PubMed  CAS  Google Scholar 

  25. Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112:518–24.

    Article  PubMed  Google Scholar 

  26. Thomas B, Rutman A, Hirst R, Haldar P, Wardlaw AJ, Bankart J, et al. Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J Allergy Clin Immunol. 2010;126:722–9.

    Article  PubMed  Google Scholar 

  27. Pifferi M, Cangiotti AM, Caramella D, Pietrobelli A, Ragazzo V, De Marco E, et al. "Cyst-like" structures within the ciliary shafts in children with bronchiectasis. Eur Respir J. 2004;23:857–60.

    Article  PubMed  CAS  Google Scholar 

  28. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun. 2014;5:418.

    Article  CAS  Google Scholar 

  29. • Davis SD, Ferkol TW, Rosenfeld M, Lee HS, Dell SD, Sagel SD, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191:316–24. Translational research linking ciliary ultrastructural defects (i.e. CCDC39 and CCDC40 defects) and abnormal clinical manifestations.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91:672–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gomperts BN, Kim GJ, Flaherty SA, Hackett BP. IL-13 regulates cilia loss and Foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol. 2007;37:339–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gerovac BJ, Fregien NL. IL-13 inhibits multicilin expression and ciliogenesis via Janus kinase/signal transducer and activator of transactivation independently of notch cleavage. Am J Respir Cell Mol Biol. 2016;54:554–61.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao KQ, Goldstein N, Yang H, Cowan AT, Chen B, Zheng C, et al. Inherent differences in nasal and tracheal ciliary function in response to Pseudomonas aeruginosa challenge. Am J Rhinol Allergy. 2011;25:209–13.

    Article  PubMed  Google Scholar 

  34. Kuiken T, Bernadette G, van den Hoogen, Laman JD, van Amerongen G, Sprong L, et al. Experimental human metapneumovirus infection of Cynomolgus macaques (Macaca fascicularis) in virus replication in ciliated epithelila cells and pneumocytes with associated lesions throughout the respiratory tract. Am J Pathol. 2004;164:1893–900.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Souza N, Favoreto S, Wong H, Ward T, Yagi S, Schnurr D, et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than nasal airway epithelial cells in human subjects. J Allergy Clin Immunol. 2009;123:1384–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. • Smith CM, Kulkarni H, Radhakrishnan P, Rutman A, Bankart MJ, Williams G, et al. Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur Respir J. 2014;43:486–96. Comprehensive documentation of how viral infection contributed to ciliary ultrastrucutral defects and inflammatory responses of airway epithelium.

    Article  Google Scholar 

  37. Tan KS, Yan Y, Ong HH, Chow VTK, Shi L, Wang DY. Impact of respiratory virus infections in exacerbation of acute and chronic rhinosinusitis. Curr Allergy Asthma Rep. 2017;17(4):24.

    Article  PubMed  Google Scholar 

  38. Pawelczyk M, Kowalski ML. The role of human parainfluenza virus infections in the immunopathology of the respiratory tract. Curr Allergy Asthma Rep. 2017;17(3):16.

    Article  PubMed  Google Scholar 

  39. Yan Y, Tan KS, Li C, Tran T, Chao SS, Sugrue RJ, et al. Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol. 2016;138:276–81.

    Article  PubMed  CAS  Google Scholar 

  40. Tan KS, Ong HH, Yan Y, Liu J, Li C, Ong YK, et al. In vitro model of fully differentiated human nasal epithelial cells infected with rhinovirus reveals epithelium-initiated immune responses. J Infect Dis. 2018;217:906–15.

    Article  PubMed  Google Scholar 

  41. Tint D, Kubala S, Tosakala E. Risk factors and comorbidities in chronic rhinosinusitis. Curr Allergy Asthma Rep. 2016;16(1):16.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang J, Guan L, Wen W, Lu Y, Zhu Q, Yuan H, et al. A novel mutation of DNAH5 in chronic rhinosinusitis and primary ciliary dyskinesia in a Chinese family. Eur Arch Otorhinolaryngol. 2014;1:1589–94.

    Article  Google Scholar 

  43. Gudis D, Zhao KQ, Cohen NA. Acquired cilia dysfunction in chronic rhinosinusitis. Am J Rhinol Allergy. 2012;26:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Liu Y. Nasal ultrastructure ciliates and symptoms changing in rat model of allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2010;24:365–8.

    PubMed  Google Scholar 

  45. Koblizek V, Tomsova M, Cermakova E, Papousek P, Pracharova S, Mandalia RA, et al. Impairment of nasal mucociliary clearance in former smokers with stable chronic obstructive pulmonary disease relates to the presence of a chronic bronchitis phenotype. Rhinology. 2011;49:397–406.

    PubMed  CAS  Google Scholar 

  46. Peng Y, Chen Z, Guan WJ, Zhu Z, Tan KS, Hong H, et al. Down-regulation and aberrant localizations of Forkhead-box J1 in allergic nasal mucosa. Int Arch Allergy Immunol. 2018;176:115–23.

    Article  PubMed  CAS  Google Scholar 

  47. Yaghi A, Zaman A, Cox G, Dolovich MB. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir Med. 2012;106:1139–47.

    Article  PubMed  Google Scholar 

  48. Wain LV, Savers I, Soler Artigas M, Portelli MA, Zeggini E, Obeidat M, et al. Whole exome re-sequencing implicates CCDC38 and cilia structure and function in resistance to smoking related airflow obstruction. PLoS Genet. 2014;10:e1004314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lam HC, Cloonan SM, Bhashvam AR, Haspel JA, Singh A, Sathirapongsasuti JF, et al. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest. 2013;123:5212–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dizier MH, Nadif R, Margaritte-Jeannin P, Barton SJ, Sarnowski C, Gagné-Ouellet V, et al. Interaction between the DNAH9 and early smoke exposure in bronchial hyperresponsiveness. Eur Respir J. 2016;47:1072–81.

    Article  PubMed  CAS  Google Scholar 

  51. Gilley SK, Stenbit AE, Pasek RC, Sas KM, Steele SL, Amria M, et al. Deletion of airway cilia results in noninflammatory bronchiectasis and hypereractive airways. Am J Physiol Lung Cell Mol Physiol. 2014;306:L162–9.

    Article  PubMed  CAS  Google Scholar 

  52. Tsang KW, Tipoe G, Sun J, Tan KC, Leung R, Yan C, et al. Clinical value of ciliary assessment of bronchiectasis. Lung. 2005;183:73–86.

    Article  PubMed  Google Scholar 

  53. Tsang KW, Tipoe G, Mak JC, Sun J, Wong M, Leung R, et al. Ciliary central microtubular orientation is of no clinical significance in bronchiectasis. Respir Med. 2005;99:290–7.

    Article  PubMed  Google Scholar 

  54. Chen ZG, Li YY, Wang ZN, Li M, Lim HF, Zhou YQ, et al. Aberrant epithelial remodeling with impairment of cilia architecture in non-cystic fibrosis bronchiectasis. J Thorac Dis. 2018;10:1753–64.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet. 2013;93:346–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189:707–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, Ta-shma A, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013;8:e72299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J. 2014;44:1579–88.

    Article  PubMed  CAS  Google Scholar 

  59. Werner C, Lablans M, Atanian M, Raidt J, Wallmeier J, Große-Onnebrink J, et al. An international registry for primary ciliary dyskinesia. Eur Respir J. 2016;47:849–59.

    Article  PubMed  Google Scholar 

  60. Goutaki M, Maurer E, Halbeisen FS, Amirav I, Barbato A, Behan L, et al. PCD Italian Consortium; Swiss PCD Group; French Reference Centre for Rare Lung Diseases; Genetic Disorders of Mucociliary Clearance Consortium. The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results. Eur Respir J. 2017;49(1):1601181.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jorissen M, Van der Schueren B, Van den Berghe H, Cassiman JJ. In vitro ciliogenesis in respiratory epithelium of cystic fibrosis patients. Ann Otol Rhinol Laryngol. 1991;100:366–71.

    Article  PubMed  CAS  Google Scholar 

  62. Armengot M, Escribano A, Carda C, Sánchez C, Romero C, Basterra J. Nasal mucociliary transport and ciliary ultrastructure in cystic fibrosis. A comparative study with healthy volunteers. Int J Pediatr Otorhinolaryngol. 1997;40:27–34.

    Article  PubMed  CAS  Google Scholar 

  63. Nair C, Shoemark A, Chan M, Ollosson S, Dixon M, Hogg C, et al. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function. Eur Respir J. 2014;44:1253–61.

    Article  PubMed  CAS  Google Scholar 

  64. Blue E, Louie TL, Hebbring SL, Hebbring SJ, Barnes KC, Rafaels NM, et al. U.S. National Heart, Lung, and Blood Institute “Grand Opportunity” Exome Sequencing Project (LungGO). Variation in cilia protein genes and progression of lung disease in cystic fibrosis. Ann Am Thorac Soc. 2018;15:440–8.

    Article  PubMed  Google Scholar 

  65. Shah AS, Farmen SL, Moninger TO, Businga TR, Andrews MP, Bugge K, et al. Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc Natl Acad Sci U S A. 2008;105:3380–5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li Y, Garrod AS, Madan-Khetarpal S, Sreedher G, McGuire M, Yagi H, et al. Respiratory motile cilia dysfunction in a patient with cranioectodermal dysplasia. Am J Med Genet A. 2015;167A:2188–96.

    Article  PubMed  CAS  Google Scholar 

  67. Ware SM, Gunay-Aygun M, Hildebrandt F. Spectrum of clinical diseases caused by disorders of primary cilia. Am J Respir Cell Mol Biol. 2011;8:444–50.

    Google Scholar 

  68. Yang X, Xu Y, Jin J, Li R, Liu X, Sun Y. Chronic rhinosinusitis is associated with higher prevalence and severity of bronchiectasis in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:655–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Guan WJ, Gao YH, Li HM, Yuan JJ, Chen RC, Zhong NS. Impacts of co-existing chronic rhinosinusitis on disease severity and risks of exacerbations in Chinese adults with bronchiectasis. PLoS One. 2015;10:e0137348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. •• Jackson CL, Behan L, Collins SA, Goggin PM, Adam EC, Coles JL, et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J. 2016;47:837–48. Validation of the diagnostic value of different tests for primary cilia dyskinesia.

    Article  PubMed  CAS  Google Scholar 

  71. Collins SA, Gove K, Walker W, Lucas JGA. Nasal nitric oxide screening for primary ciliary dyskinesia: systemic review and meta-analysis. Eur Respir J. 2014;44:1589–99.

    Article  PubMed  Google Scholar 

  72. Jorissen M, Willems T, van der Schueren B. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture. Acta Otolaryngol. 2000;120:291–5.

    Article  PubMed  CAS  Google Scholar 

  73. Hirst RA, Jackson CL, Coles JL, Williams G, Rutman A, Goggin PM, et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One. 2014;9:e89675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Paff T, Daniels JMA, Weersink EJ, Lutter R, Vonk Noordegraaf A, Haarman EG. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur Respir J. 2017;49:1601770.

    Article  PubMed  Google Scholar 

  75. Hart A, Sugumar K, Milan SJ, Fowler SJ, Crossingham I. Inhaled hyperosmolar agents for bronchiectasis. Cochrane Database Syst Rev. 2014;12:CD002996.

    Google Scholar 

  76. Li YY, Liu J, Li CW, Subramaniam S, Chao SS, Yu FG, et al. Myrtol standardized affects mucociliary clearance. Int Forum Allergy Rhinol. 2017;7:304–11.

    Article  PubMed  Google Scholar 

  77. Yamaya M, Azuma A, Takizawa H, Kadota J, Tamaoki J, Kudoh S. Macrolide effects on the prevention of COPD exacerbations. Eur Respir J. 2012;40:485–94.

    Article  PubMed  CAS  Google Scholar 

  78. Demarco RC, Tamashiro E, Rossato M, Ferreira MD, Valera FC, Anselmo-Lima WT. Ciliary ultrastructure in patients with chronic rhinosinusitis and primary ciliary dyskinesia. Eur Arch Otorhinolaryngol. 2013;270:2065–70.

    Article  PubMed  Google Scholar 

  79. Milara J, Armengot M, Banuls P, Tenor H, Beume R, Artigues E, et al. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol. 2012;166:2243–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, et al. Respiratory syncytial virus inhibits ciliogenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One. 2012;7:e48037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Astrand AB, Hemmerling M, Root J, Wingren C, Pesic J, Johansson E, et al. Linking increased airway hydration, ciliary beating, and mucociliary clearance though ENaC inhibition. Am J Phys Lung Cell Mol Phys. 2015;308:L22–32.

    Google Scholar 

  82. Chhin B, Negre D, Merrot O, Pham J, Tourneur Y, Ressnikoff D, et al. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy. PLoS Genet. 2009;5:e1000422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Butler CR, Hynds RE, Gowers KH, Lee Ddo H, Brown JM, Crowley C, et al. Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. Am J Respir Crit Care Med. 2016;194:156–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

National Medical Research Council of Singapore (NMRC/CIRG/1458/2016) (to Prof. Wang); Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2017 and Pearl River S&T Nova Program of Guangzhou No. 201710010097 (to Dr. Guan); The Major Research Development Program of Shandong Province No. 2016GSF201084 (to Dr. Zi); Changjiang Scholars and Innovative Research Team in University ITR0961, The National Key Technology R&D Program of the 12th National Five-year Development Plan 2012BAI05B01 and National Key Scientific & Technology Support Program: Collaborative innovation of Clinical Research for chronic obstructive pulmonary disease and lung cancer No. 2013BAI09B09 (to Prof. Zhong).

Author information

Authors and Affiliations

Authors

Contributions

W. J. G., Y. P., X. X. Z., K. S. T. and T. T. H. drafted the manuscript; D. Y. W. and N. S. Z. critically revised the manuscript and approved final submission.

Corresponding authors

Correspondence to Nan-shan Zhong or De Yun Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Wj., Peng, Y., Zi, Xx. et al. Motile Ciliary Disorders in Chronic Airway Inflammatory Diseases: Critical Target for Interventions. Curr Allergy Asthma Rep 18, 48 (2018). https://doi.org/10.1007/s11882-018-0802-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-018-0802-x

Keywords

Navigation