Skip to main content

Advertisement

Log in

Assessment of source contributions to air pollution in Beirut, Lebanon: a comparison of source-based and tracer-based modeling approaches

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

A chemical-transport model (CTM), Polyphemus/Polair3D, is used to investigate the contributions of various anthropogenic and biogenic sources to total organic carbon (OC) in PM2.5 in Beirut, Lebanon, during the summer of 2011. Those results are compared to a tracer-based source apportionment of OC at an ambient site in Beirut where a measurement campaign was conducted in July 2011. The results obtained from the CTM in the base simulation S1 suggest contributions to total simulated OC mass (3.24 μg/m3) of 66 % (2.14 ± 1.07 μg/m3) from fossil fuel burning (FFB) and 8 % (0.27 ± 0.135 μg/m3) from biogenic secondary organic carbon (BSOC). The tracer-based approach leads to contribution estimates to total measured OC mass (5.6 μg/m3) of 16 % (0.9 μg/m3 ± 0.22) from FFB, 53 % (2.9 ± 1.7 μg/m3) from BSOC, and 32 % (1.8 ± 0.88 μg/m3) from cooking activities. In a second CTM simulation S2, emissions related to cooking activities were added to the emission inventory, monoterpene and sesquiterpene secondary organic aerosol (SOA) surrogate species were added to the boundary conditions, and a lower ratio of semi-volatile organic compounds to primary organic aerosols (SVOC/POA) was used. The S2 results obtained showed contributions to total simulated OC mass (3.01 μg/m3) of 33 % (0.98 ± 0.49 μg/m3) from FFB, 18 % (0.53 ± 0.27 μg/m3) from BSOC, and 39 % (1.2 ± 0.6 μg/m3) from cooking activities. The differences between these two methods are discussed in terms of their uncertainties and biases. The comparison of both approaches showed that the model underestimates the secondary fraction of OC, which may be due to underestimations of some biogenic volatile organic compound (VOC) emissions and/or boundary concentrations as well as the use of SOA yields that may not be representative of the eastern Mediterranean region. Concerning the tracer-based approach, the use of tracer/OC ratios that are not specific to Lebanon because of a lack of data could represent a limitation of this methodology. Nevertheless, this comparative analysis suggests that on-road transportation and diesel generators used for electricity production are major sources of atmospheric PM and should be targeted for emission reduction. Finally, cooking activities, which were identified as a significant source of PM with the tracer-based approach, should be studied further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afif C, Chélala C, Borbon A et al (2008) SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Qual Atmos Health 1:167–178. doi:10.1007/s11869-008-0022-y

    Article  CAS  Google Scholar 

  • Afif C, Dutot A, Jambert C et al (2009) Statistical approach for the characterization of NO2 concentrations in Beirut. Air Qual Atmos Health 2:57–67. doi:10.1007/s11869-009-0034-2

    Article  CAS  Google Scholar 

  • Baldasano JM, Güereca LP, López E et al (2008) Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: the high-elective resolution modelling emission system (HERMES). Atmos Environ 42:7215–7233. doi:10.1016/j.atmosenv.2008.07.026

    Article  CAS  Google Scholar 

  • Couvidat F, Debry É, Sartelet K, Seigneur C (2012) A hydrophilic/hydrophobic organic (H2O) aerosol model: development, evaluation and sensitivity analysis. J Geophys Res 117, D10304. doi:10.1029/2011JD017214

    Article  Google Scholar 

  • Couvidat F, Kim Y, Sartelet K et al (2013) Modeling secondary organic aerosol in an urban area: application to Paris, France. Atmos Chem Phys 13:983–996. doi:10.5194/acp-13-983-2013

    Article  CAS  Google Scholar 

  • Crippa M, Canonaco F, Slowik JG et al (2013) Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmos Chem Phys 13:8411–8426. doi:10.5194/acp-13-8411-2013

    Article  Google Scholar 

  • Debry E, Fahey K, Sartelet K et al (2007) Technical note: a new size resolved aerosol model (SIREAM). Atmos Chem Phys 7:1537–1547. doi:10.5194/acp-7-1537-2007

    Article  CAS  Google Scholar 

  • Ding X, Wang X-M, Gao B et al (2012) Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J Geophys Res 117, D05313. doi:10.1029/2011JD016596

    Google Scholar 

  • El Haddad I, Marchand N, Temime-Roussel B et al (2011a) Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos Chem Phys 11:2059–2079. doi:10.5194/acp-11-2059-2011

    Article  Google Scholar 

  • El Haddad I, Marchand N, Wortham H et al (2011b) Primary sources of PM2.5 organic aerosol in an industrial Mediterranean City, Marseille. Atmos Chem Phys 11:2039–2058. doi:10.5194/acp-11-2039-2011

    Article  Google Scholar 

  • Friedlander SK (1973) Chemical element balances and identification of air pollution sources. Environ Sci Technol 7:235–240. doi:10.1021/es60075a005

    Article  CAS  Google Scholar 

  • Gelencsér A, May B, Simpson D et al (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res 112:D23S04. doi:10.1029/2006JD008094

    Google Scholar 

  • Geron CD, Arnts RR (2010) Seasonal monoterpene and sesquiterpene emissions from Pinus taeda and Pinus virginiana. Atmos Environ 44:4240–4251. doi:10.1016/j.atmosenv.2010.06.054

    Article  CAS  Google Scholar 

  • Guenther A, Geron C, Pierce T et al (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230. doi:10.1016/S1352-2310(99)00465-3

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210. doi:10.5194/acp-6-3181-2006

    Article  CAS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236. doi:10.5194/acp-9-5155-2009

    Article  CAS  Google Scholar 

  • Hopke PK (2003) Recent developments in receptor modeling. J Chemometr 17:255–265. doi:10.1002/cem.796

    Article  CAS  Google Scholar 

  • Horowitz LW, Fiore AM, Milly GP et al (2007) Observational constraints on the chemistry of isoprene nitrates over the eastern United States. J Geophys Res 112:D12S08. doi:10.1029/2006JD007747

    Article  Google Scholar 

  • Hoyle CR, Boy M, Donahue NM et al (2011) A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos Chem Phys 11:321–343. doi:10.5194/acp-11-321-2011

    Article  CAS  Google Scholar 

  • IPCC (International Panel on Climate Change). Forster, P, V. Ramaswamy, P. Artaxo, T, et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K. B., Tignor M., Miller H. L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Kim Y, Sartelet K, Seigneur C (2009) Comparison of two gas-phase chemical kinetic mechanisms of ozone formation over Europe. J Atmos Chem 62:89–119. doi:10.1007/s10874-009-9142-5

    Article  CAS  Google Scholar 

  • Kleeman MJ, Riddle SG, Robert MA et al (2008) Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode. Environ Sci Technol 43:272–279. doi:10.1021/es800400m

    Article  Google Scholar 

  • Kleindienst TE, Jaoui M, Lewandowski M et al (2007) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos Environ 41:8288–8300. doi:10.1016/j.atmosenv.2007.06.045

    Article  CAS  Google Scholar 

  • Kourtchev I, Warnke J, Maenhaut W et al (2008) Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. Chemosphere 73:1308–1314. doi:10.1016/j.chemosphere.2008.07.011

    Article  CAS  Google Scholar 

  • Kourtchev I, Copolovici L, Claeys M, Maenhaut W (2009) Characterization of atmospheric aerosols at a forested site in central Europe. Environ Sci Technol 43:4665–4671. doi:10.1021/es803055w

    Article  CAS  Google Scholar 

  • Krzyzanowski M, Cohen A (2008) Update of WHO air quality guidelines. Air Qual Atmos Health 1:7–13. doi:10.1007/s11869-008-0008-9

    Article  Google Scholar 

  • Lanz VA, Prévôt ASH, Alfarra MR et al (2010) Characterization of aerosol chemical composition with aerosol mass spectrometry in central Europe: an overview. Atmos Chem Phys 10:10453–10471. doi:10.5194/acp-10-10453-2010

    Article  CAS  Google Scholar 

  • Lewandowski M, Jaoui M, Offenberg JH et al (2008) Primary and secondary contributions to ambient PM in the midwestern United States. Environ Sci Technol 42:3303–3309. doi:10.1021/es0720412

    Article  CAS  Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17:187–202. doi:10.1007/BF00117978

    Article  Google Scholar 

  • Mallet V, Quélo D, Sportisse B et al (2007) Technical note: the air quality modeling system polyphemus. Atmos Chem Phys 7:5479–5487. doi:10.5194/acp-7-5479-2007

    Article  CAS  Google Scholar 

  • McDonald JD, Zielinska B, Fujita EM et al (2003) Emissions from charbroiling and grilling of chicken and beef. J Air Waste Manage Assoc 53:185–194. doi:10.1080/10473289.2003.10466141

    Article  CAS  Google Scholar 

  • Mohr C, DeCarlo PF, Heringa MF et al (2012) Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos Chem Phys 12:1649–1665. doi:10.5194/acp-12-1649-2012

    Article  CAS  Google Scholar 

  • Nenes A, Pandis S, Pilinis C (1998) ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem 4:123–152. doi:10.1023/A:1009604003981

    Article  CAS  Google Scholar 

  • Ormeño E, Fernandez C, Bousquet-Mélou A et al (2007) Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmos Environ 41:629–639. doi:10.1016/j.atmosenv.2006.08.027

    Article  Google Scholar 

  • Pun BK, Wu S-Y, Seigneur C (2002) Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States. Environ Sci Technol 36:3586–3596. doi:10.1021/es015872v

    Article  CAS  Google Scholar 

  • Puxbaum H, Caseiro A, Sánchez-Ochoa A et al (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res 112:D23S05. doi:10.1029/2006JD008114

    Google Scholar 

  • Rad H, Babaei A, Goudarzi G, et al. (2014) Levels and sources of BTEX in ambient air of Ahvaz Metropolitan City. Air Qual Atmos Health 1–10. doi: 10.1007/s11869-014-0254-y

  • Robinson AL, Donahue NM, Shrivastava MK et al (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    Article  CAS  Google Scholar 

  • Sartelet KN, Debry E, Fahey K et al (2007) Simulation of aerosols and gas-phase species over Europe with the Polyphemus system: part I—model-to-data comparison for 2001. Atmos Environ 41:6116–6131. doi:10.1016/j.atmosenv.2007.04.024

    Article  CAS  Google Scholar 

  • Sartelet KN, Couvidat F, Seigneur C, Roustan Y (2012) Impact of biogenic emissions on air quality over Europe and North America. Atmos Environ 53:131–141. doi:10.1016/j.atmosenv.2011.10.046

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 4. C1–C27 organic compounds from cooking with seed oils. Environ Sci Technol 36:567–575. doi:10.1021/es002053m

    Article  Google Scholar 

  • Seigneur C, Pai P, Hopke PK, Grosjean D (1999) Environmental policy analysis: modeling atmospheric particulate matter. Environ Sci Technol 33:80A–86A. doi:10.1021/es9926820

    Article  CAS  Google Scholar 

  • Simpson D, Winiwarter W, Börjesson G et al (1999) Inventorying emissions from nature in Europe. J Geophys Res 104:8113–8152. doi:10.1029/98JD02747

    Article  CAS  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR Technical note, −475 + STR

  • Song J, Vizuete W, Chang S et al (2008) Comparisons of modeled and observed isoprene concentrations in southeast Texas. Atmos Environ 42:1922–1940. doi:10.1016/j.atmosenv.2007.11.016

    Article  CAS  Google Scholar 

  • Stohl A, Forster C, Frank A et al (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474. doi:10.5194/acp-5-2461-2005

    Article  CAS  Google Scholar 

  • Szidat S, Ruff M, Perron N et al (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos Chem Phys 9:1521–1535. doi:10.5194/acp-9-1521-2009

    Article  CAS  Google Scholar 

  • Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteorol 37:129–148. doi:10.1007/BF00122760

    Article  Google Scholar 

  • Tsigaridis K, Kanakidou M (2003) Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis. Atmos Chem Phys 3:1849–1869. doi:10.5194/acp-3-1849-2003

    Article  CAS  Google Scholar 

  • Ulbrich IM, Canagaratna MR, Zhang Q et al (2009) Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys 9:2891–2918. doi:10.5194/acp-9-2891-2009

    Article  CAS  Google Scholar 

  • Waked A, Afif C (2012) Emissions of air pollutants from road transport in Lebanon and other countries in the Middle East Region. Atmos Environ 61:446–452. doi:10.1016/j.atmosenv.2012.07.064

    Article  CAS  Google Scholar 

  • Waked A, Afif C, Seigneur C (2012) An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon. Atmos Environ 50:88–96. doi:10.1016/j.atmosenv.2011.12.058

    Article  CAS  Google Scholar 

  • Waked A, Afif C, Brioude J et al (2013a) Composition and source apportionment of organic aerosol in Beirut, Lebanon, during winter 2012. Aerosol Sci Technol 11:1258–1266. doi:10.1080/02786826.2013.831975

    Article  Google Scholar 

  • Waked A, Seigneur C, Couvidat F et al (2013b) Modeling air pollution in Lebanon: evaluation at a suburban site in Beirut during summer. Atmos Chem Phys 13:5873–5886. doi:10.5194/acp-13-5873-2013

    Article  CAS  Google Scholar 

  • Waked A, Afif C, Formenti P et al (2014a) Characterization of organic tracer compounds in PM2.5 at a semi-urban site in Beirut, Lebanon. Atmos Res 143:85–94. doi:10.1016/j.atmosres.2014.02.006

    Article  CAS  Google Scholar 

  • Waked A, Favez O, Alleman LY et al (2014b) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos Chem Phys 14:3325–3346. doi:10.5194/acp-14-3325-2014

    Article  CAS  Google Scholar 

  • Yarwood G, Rao S, Yocke M et al (2005) Updates to the carbon bond chemical mechanism : CB05 final report to the US EPA, RT-0400675

    Google Scholar 

  • Yttri KE, Simpson D, Stenström K et al (2011) Source apportionment of the carbonaceous aerosol in Norway—quantitative estimates based on 14C, thermal-optical and organic tracer analysis. Atmos Chem Phys 11:9375–9394. doi:10.5194/acp-11-9375-2011

    Article  CAS  Google Scholar 

  • Zheng J, Zheng Z, Yu Y, Zhong L (2010) Temporal, spatial characteristics and uncertainty of biogenic VOC emissions in the Pearl River Delta region. China Atmos Environ 44:1960–1969. doi:10.1016/j.atmosenv.2010.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding of this study was provided by École des Ponts ParisTech and the Lebanese National Council for Scientific Research and Saint Joseph University (Faculty of Sciences and the Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Waked.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waked, A., Afif, C. & Seigneur, C. Assessment of source contributions to air pollution in Beirut, Lebanon: a comparison of source-based and tracer-based modeling approaches. Air Qual Atmos Health 8, 495–505 (2015). https://doi.org/10.1007/s11869-014-0298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-014-0298-z

Keywords

Navigation