Skip to main content

Advertisement

Log in

Immunotherapy Alone or in Combination with Chemotherapy as First-Line Treatment of Non-Small Cell Lung Cancer

  • Lung Cancer (HA Wakelee and TA Leal, Section Editors)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

A Correction to this article was published on 12 September 2020

This article has been updated

Opinion statement

Immune checkpoint inhibitors (ICIs) have revolutionized the management of metastatic and selected cases of unresectable advanced non-small cell lung cancer (NSCLC). Importantly for patients, this implies that in the absence of a targetable oncogenic driver [especially epidermal growth factor receptor (EGFR) gene mutations and anaplastic lymphoma kinase (ALK) gene rearrangements] and in the presence of high programmed death-ligand 1 (PD-L1) expression (≥ 50%), they are eligible for mono-therapy with pembrolizumab thereby avoiding chemotherapy as the first line of treatment. This mono-immunotherapy approach for high PD-L1 metastatic NSCLC is associated with improved overall survival (OS) and radiological responses (RR) with lesser toxicity as compared with conventional platinum doublet chemotherapy for both non-squamous and squamous histological types.

However, majority of NSCLC patients either have no or low expression of PD-L1 (< 50%) and such patients derive greater benefit from a combination of PD-1/PD-L1 ICIs with platinum doublet chemotherapy as compared with chemotherapy alone. Again, benefits are seen for both OS and RRs. However, combining immunotherapy with chemotherapy, in general, does lead to higher toxicity than those seen with either of the two alone.

Additionally, for non-squamous NSCLC patients, clinicians should not initiate ICI treatment till the results of common targetable genetic alterations like EGFR mutation, ALK, and ROS1 gene rearrangement testing are known (preferably on broad next generation sequencing) and are negative (even if results of PD-L1 testing are available)—as targeted therapies remain the cornerstone of treatment for patients harboring these oncogenic drivers.

It is worth mentioning that PD-1 and PD-L1 ICIs are very expensive, and their usage is associated with occurrence of immune-related adverse events (irAEs) which occasionally can be severe. Hence, it is important to discuss efficacy, toxicity, and cost-related to ICI treatment with each and every patient at diagnosis in order to help them decide if they are willing to go ahead with this form of therapy either singly (for high PD-L1 expressors) or in combination with chemotherapy (for others).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 12 September 2020

    The original version of this article unfortunately contained mistakes. In Table 2, under the column 'Lead to death' in Row 5 [CheckMate-026], the figures should read as '0.7' for Experimental Arm and '1.1' for Comparator. Right now, these are printed as 0.007 and 0.011 respectively.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Global Health. 2019;85(1)8. https://doi.org/10.5334/aogh.2419.

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

  3. Wistuba II, Brambilla E, Noguchi M. Classic Anatomic Pathology and Lung Cancer. In: Pass HI, Ball D, Scagliotti GV, editors. IASLC Thoracic Oncology (Second Edition). Philadelphia; 2018. p. 143-63.e4.

  4. • Ettinger DS, Aisner DL, Wood DE, Akerley W, Bauman J, Chang JY, et al. NCCN guidelines insights: non-small cell lung cancer, Version 5.2018. J Natl Compr Cancer Netw. 2018;16(7):807–21 Evidence based guidelines insights on management of NSCLC with focus on immunotherpy and targetted therapy.

    Google Scholar 

  5. • Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol. 2017;35(30):3484–515 Evidence based guidelines and recommendations on management of stage IV NSCLC.

    CAS  PubMed  Google Scholar 

  6. • Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol. 2018;36(9):911–919 Recommendations on molecular testing in NSCLC to assess suitability for targetted therapy. The guideline addresses questions on prioritizing “whom to test” and “what to test.”.

    CAS  PubMed  Google Scholar 

  7. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829.

    PubMed  PubMed Central  Google Scholar 

  8. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-cmall-cell lung cancer. New Engl J Med. 2016;375(19):1823–33 Phase III randomised controlled trial establishing the superiority of pembrolizumab, in terms of PFS, OS and adverse effects, in previously untreated NSCLC with high PD-L expression.

    CAS  PubMed  Google Scholar 

  11. •• TSK M, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30 Phase III randomised controlled trial assessing the role of pembrolizumab in previously untreated NSCLC with PD-L1 expression of at least 1%. OS was longer in pembrolizumab group than conventional chemotherapy group in all three subpopulations of PD-L1 expression – 1% or greater, 20% or greater and 50% or greater.

    Google Scholar 

  12. •• Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. New Engl J Med. 2018;379(21):2040–51 Landmark sudy that established the role of combination of pembrolizumab and chemotherapy for management of squamous NSCLC, in the first-line setting. Combination therapy was better than chemotherapy alone in terms of PFS and OS.

    CAS  PubMed  Google Scholar 

  13. •• Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. New Engl J Med. 2018;378(22):2078–92 Landmark sudy that established the role of combination of pembrolizumab and chemotherapy for management of non-squamous NSCLC, in the first-line setting. Combination had a higher OS at all levels of PD-L1 expression.

    CAS  PubMed  Google Scholar 

  14. •• Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. New Engl J Med. 2017;376(25):2415–26 Phase III randomised controlled trial assessing the role of nivolumab in patients with previously untreated advanced NSCLC with PD-L1 expression of 5% or more. The sudy found no differences in PFS or OS between nivolumab and chemotherapy arms.

    CAS  PubMed  Google Scholar 

  15. •• Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. New Engl J Med. 2018;378(24):2288–301 Phase III randomised controlled trial that studied the role of adding atezolizumab to bevacizumab and chemotherapy for management of previously untreated non-squamous NSCLC. Addition of atezolizumab led to advantages in terms of both PFS and OS.

    CAS  PubMed  Google Scholar 

  16. •• West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37 Phase III randomised controlled trial studying the role of addition of atezolizumab to chemotherapy compared with chemotherapy alone in stage IV, previously untreated non-squamous NSCLC. Addition of atezolizumab to chemotherapy led to improvements in PFS and OS compared to chemotherapy alone.

    CAS  PubMed  Google Scholar 

  17. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    PubMed  Google Scholar 

  18. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    CAS  PubMed  Google Scholar 

  19. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    CAS  PubMed  Google Scholar 

  20. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–91.

    CAS  PubMed  Google Scholar 

  21. Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D, et al. Pretreatment with cisplatin enhances E7-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res. 2008;14(10):3185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44(2):343–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Papadimitrakopoulou V, Cobo M, Bordoni R, Dubray-Longeras P, Szalai Z, Ursol G, et al. IMpower132: PFS and safety results with 1L atezolizumab+ carboplatin/cisplatin+ pemetrexed in stage IV non-squamous NSCLC. J Thorac Oncol. 2018;13(10_suppl):S332–3.

  24. Jotte RM, Cappuzzo F, Vynnychenko I, Stroyakovskiy D, Abreu DR, Hussein MA, et al. IMpower131: primary PFS and safety analysis of a randomized phase III study of atezolizumab+ carboplatin+ paclitaxel or nab-paclitaxel vs carboplatin+ nab-paclitaxel as 1L therapy in advanced squamous NSCLC. J Clin Oncol. 2018;36(18 suppl):LBA9000.

    Google Scholar 

  25. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010;107(9):4275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    PubMed  PubMed Central  Google Scholar 

  27. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldman JW, Antonia SJ, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, et al. Nivolumab (N) plus ipilimumab (I) as first-line (1L) treatment for advanced (adv) NSCLC: 2-yr OS and long-term outcomes from CheckMate 012. J Clin Oncol; 2017: 35(15_suppl):9093. https://doi.org/10.1200/JCO.2017.35.15_suppl.9093.

  30. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.

    CAS  PubMed  Google Scholar 

  31. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. New Engl J Med. 2019;381(21):2020–31. Phase III trial assessing the role of combination of nivolumab and ipilimumab in the management of stage IV NSCLC, in the first-line setting.

  33. Peters S, Cho B, Reinmuth N, editors. Tumor mutational burden (TMB) as a biomarker of survival in metastatic non-small cell lung cancer (mNSCLC): blood and tissue TMB analysis from MYSTIC, a Phase III study of first-line durvalumab±tremelimumab vs chemotherapy. Cancer Res 2019;79(13_suppl):CT074 https://doi.org/10.1158/1538-7445.AM2019-CT074.

  34. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37(7):537–46.

    CAS  PubMed  Google Scholar 

  35. Spigel D, de Marinis F, Giaccone G, Reinmuth N, Vergnenegre A, Barrios C, et al. IMpower110: interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1–selected NSCLC. Ann Oncol. 2019;30(suppl_5):v915. https://doi.org/10.1093/annonc/mdz394.

  36. Spigel DR, Chaft JE, Gettinger S, Chao BH, Dirix L, Schmid P, et al. FIR: efficacy, safety, and biomarker analysis of a phase II open-label study of atezolizumab in PD-L1-selected patients with NSCLC. J Thorac Oncol. 2018;13(11):1733–42.

    PubMed  PubMed Central  Google Scholar 

  37. Peters S, Gettinger S, Johnson ML, Janne PA, Garassino MC, Christoph D, et al. Phase II trial of Atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 2017;35(24):2781–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brahmer JR, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fülöp A, et al. Progression after the next line of therapy (PFS2) and updated OS among patients (pts) with advanced NSCLC and PD-L1 tumor proportion score (TPS) ≥50% enrolled in KEYNOTE-024. J Clin Oncol. 2017;35(15_suppl):9000. https://doi.org/10.1200/JCO.2017.35.15_suppl.9000.

  39. Zhou Y, Lin Z, Zhang X, Chen C, Zhao H, Hong S, et al. First-line treatment for patients with advanced non-small cell lung carcinoma and high PD-L1 expression: pembrolizumab or pembrolizumab plus chemotherapy. J Immunother Cancer. 2019;7(1):120.

    PubMed  PubMed Central  Google Scholar 

  40. Gadgeel SM, Stevenson J, Langer CJ, Gandhi L, Borghaei H, Patnaik A, et al. Pembrolizumab (pembro) plus chemotherapy as front-line therapy for advanced NSCLC: KEYNOTE-021 cohorts A-C. J Clin Oncol. 2016;34(15_suppl):9016.

    Google Scholar 

  41. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837–46.

    CAS  PubMed  Google Scholar 

  43. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    PubMed  Google Scholar 

  44. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 2017;35(35):3924–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Teixidó C, Vilariño N, Reyes R, Reguart N. PD-L1 expression testing in non-small cell lung cancer. Ther Adv Med Oncol. 2018;10:1758835918763493.

  51. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 2017;12(2):208–22.

    PubMed  Google Scholar 

  53. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Spigel DR, Schrock AB, Fabrizio D, Frampton GM, Sun J, He J, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol. 2016;34(15_suppl): 9017. https://doi.org/10.1200/JCO.2016.34.15_suppl.9017.

  56. Wojas-Krawczyk K, Kalinka E, Grenda A, Krawczyk P, Milanowski J. Beyond PD-L1 markers for lung cancer immunotherapy. Int J Mol Sci. 2019;20(8):1915.

    CAS  PubMed Central  Google Scholar 

  57. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kowanetz M, Zou W, Shames D, Cummings C, Rizvi N, Spira A, et al. OA20.01 tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients. J Thorac Oncol. 2017;12(1):S321–S2.

    Google Scholar 

  59. Stein MK, Pandey M, Xiu J, Tae H, Swensen J, Mittal S, et al. Tumor mutational burden is site specific in non–small-cell lung cancer and is highest in lung adenocarcinoma brain metastases. JCO Precis Oncol. 2019;3:1–13.

    PubMed  Google Scholar 

  60. Fenizia F, Pasquale R, Roma C, Bergantino F, Iannaccone A, Normanno N. Measuring tumor mutation burden in non-small cell lung cancer: tissue versus liquid biopsy. Transl Lung Cancer Res. 2018;7(6):668–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–8.

    CAS  PubMed  Google Scholar 

  62. Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, et al. Low PD-1 expression in cytotoxic CD8(+) tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24(2):407–19.

    CAS  PubMed  Google Scholar 

  63. Zeng D-Q, Yu Y-F, Ou Q-Y, Li X-Y, Zhong R-Z, Xie C-M, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer. Oncotarget. 2016;7(12):13765–81.

    PubMed  PubMed Central  Google Scholar 

  64. Corredor G, Wang X, Zhou Y, Lu C, Fu P, Syrigos K, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 2019;25(5):1526–34.

    CAS  PubMed  Google Scholar 

  65. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    CAS  PubMed  Google Scholar 

  66. Suarez-Almazor ME, Kim ST, Abdel-Wahab N, Diab A. Review: immune-related adverse events with use of checkpoint inhibitors for immunotherapy of cancer. Arthritis Rheumatol. 2017;69(4):687–99.

    PubMed  Google Scholar 

  67. Inno A, Metro G, Bironzo P, Grimaldi AM, Grego E, Di Nunno V, et al. Pathogenesis, clinical manifestations and management of immune checkpoint inhibitors toxicity. Tumori. 2017;103(5):405–21.

    CAS  PubMed  Google Scholar 

  68. Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017;28(10):2377–85.

    CAS  PubMed  Google Scholar 

  69. Marrone KA, Ying W, Naidoo J. Immune-related adverse events from immune checkpoint inhibitors. Clin Pharmacol Ther. 2016;100(3):242–51.

    CAS  PubMed  Google Scholar 

  70. Abdel-Rahman O, Helbling D, Schmidt J, Petrausch U, Giryes A, Mehrabi A, et al. Treatment-associated fatigue in cancer patients treated with immune checkpoint inhibitors; a systematic review and meta-analysis. Clin Oncol (R Coll Radiol). 2016;28(10):e127–38.

    CAS  Google Scholar 

  71. Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33(31):3541–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–e52.

    PubMed  PubMed Central  Google Scholar 

  73. Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    CAS  PubMed  Google Scholar 

  74. Fujimoto D, Yoshioka H, Kataoka Y, Morimoto T, Hata T, Kim YH, et al. Pseudoprogression in previously treated patients with non-small cell lung cancer who received nivolumab monotherapy. J Thorac Oncol. 2019;14(3):468–74.

    CAS  PubMed  Google Scholar 

  75. Gandara DR, von Pawel J, Mazieres J, Sullivan R, Helland A, Han JY, et al. Atezolizumab treatment beyond progression in advanced NSCLC: results from the randomized, phase III OAK study. J Thorac Oncol. 2018;13(12):1906–18.

    CAS  PubMed  Google Scholar 

  76. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401.

    CAS  PubMed  Google Scholar 

  77. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 2017;12(2):403–7.

    PubMed  Google Scholar 

  78. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, et al. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naive patients with advanced NSCLC. J Thorac Oncol. 2018;13(8):1138–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cavanna L, Citterio C, Orlandi E. Immune checkpoint inhibitors in EGFR-mutation positive TKI-treated patients with advanced non-small-cell lung cancer network meta-analysis. Oncotarget. 2019;10(2):209–15.

    PubMed  PubMed Central  Google Scholar 

  80. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–e41.

    PubMed  Google Scholar 

  81. Wang Q, Wu X. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol. 2017;46:210–9.

    CAS  PubMed  Google Scholar 

  82. Hastings K, Yu H, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small cell lung cancer. Ann Oncol. 2019;30:1311–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30:1321–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang H, Liu X, Wang M. Immunotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer treatment. Onco Targets Ther. 2018;11:6189–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ahn MJ, Sun JM, Lee SH, Ahn JS, Park K. EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin Drug Saf. 2017;16(4):465–9.

    CAS  PubMed  Google Scholar 

  86. Chen L, Walker MS, Zhi J, Komatsoulis GA, Jun M, Stepanski E, et al. Real-world prevalence of autoimmune disease (AD) among patients (pts) receiving immune checkpoint inhibitors (ICI) in ASCO’s CancerLinQ database. J Clin Oncol. 2019;37(15_suppl):6583.

    Google Scholar 

  87. Cortellini A, Buti S, Santini D, Perrone F, Giusti R, Tiseo M, et al. Clinical outcomes of patients with advanced cancer and pre-existing autoimmune diseases treated with anti-programmed death-1 immunotherapy: a real-world transverse study. Oncologist. 2019;24(6):e327–e37.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Khozin S, Walker MS, Jun M, Chen L, Stepanski E, Rubinstein WS, et al. Real-world outcomes of patients with advanced non-small cell lung cancer (aNSCLC) and autoimmune disease (AD) receiving immune checkpoint inhibitors (ICIs). J Clin Oncol. 2019;37(15_suppl):110.

    Google Scholar 

  89. Remon J, Hendriks L, Aspeslagh S, Besse B. Is there room for immune checkpoint inhibitors in patients who have NSCLC with autoimmune diseases? J Thorac Oncol. 2019;14(10):1701–3.

    PubMed  Google Scholar 

  90. Tison A, Quere G, Misery L, Funck-Brentano E, Danlos FX, Routier E, et al. Safety and efficacy of immune checkpoint inhibitors in patients with cancer and preexisting autoimmune disease: a nationwide multicenter cohort study. Arthritis Rheum. 2019;71(12):2100–11.

  91. Bilen MA, Shabto JM, Martini DJ, Liu Y, Lewis C, Collins H, et al. Sites of metastasis and association with clinical outcome in advanced stage cancer patients treated with immunotherapy. BMC Cancer. 2019;19(1):857.

    PubMed  PubMed Central  Google Scholar 

  92. Garassino MC, Gadgeel S, Esteban E, Felip E, Speranza G, De Angelis F, et al. Abstract CT043: outcomes among patients (pts) with metastatic nonsquamous NSCLC with liver metastases or brain metastases treated with pembrolizumab (pembro) plus pemetrexed-platinum: results from the KEYNOTE-189 study. Cancer Res 2019;79(13_suppl):CT043. https://doi.org/10.1158/1538-7445.AM2019-CT043.

  93. Goldman JW, Crino L, Vokes EE, Holgado E, Reckamp K, Pluzanski A, et al. P2.36: nivolumab (nivo) in patients (pts) with & advanced (adv) NSCLC and central & nervous system (CNS) metastases (mets) J Clin Oncol. 2017:35(15_suppl): 9093. https://doi.org/10.1200/JCO.2017.35.15_suppl.9093.

  94. Crino L, Bronte G, Bidoli P, Cravero P, Minenza E, Cortesi E, et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer. 2019;129:35–40.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Singh MD, DM.

Ethics declarations

Conflict of Interest

Puneet Saxena, Pawan Kumar Singh, Prabhat Singh Malik, and Navneet Singh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Puneet Saxena and Pawan Kumar Singh are the joint first authors.

This article is part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, P., Singh, P.K., Malik, P.S. et al. Immunotherapy Alone or in Combination with Chemotherapy as First-Line Treatment of Non-Small Cell Lung Cancer. Curr. Treat. Options in Oncol. 21, 69 (2020). https://doi.org/10.1007/s11864-020-00768-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00768-2

Keywords

Navigation