Skip to main content
Log in

Using comparison of multiple strategies in the mathematics classroom: lessons learned and next steps

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Comparison is a fundamental cognitive process that can support learning in a variety of domains, including mathematics. The current paper aims to summarize empirical findings that support recommendations on using comparison of multiple strategies in mathematics classrooms. We report the results of our classroom-based research on using comparison of multiple strategies to help students learn mathematics, which includes short-term experimental research and a year-long randomized controlled trial using a researcher-designed supplemental Algebra I curriculum. Findings indicated that comparing different solution methods for solving the same problem was particularly effective for supporting procedural flexibility across students and for supporting conceptual and procedural knowledge among students with some prior knowledge of one of the methods, but that teachers may need additional support in deciding what to compare and when to use comparison. Drawing from this research, we offer instructional recommendations for the effective use of comparison of multiple strategies for improving mathematics learning, including (a) regular and frequent comparison of alternative strategies, particularly after students have developed some fluency with one initial strategy; (b) judicious selection of strategies and problems to compare; (c) carefully-designed visual presentation of the multiple strategies; and (d) use of small group and whole class discussions around the comparison of multiple strategies, focusing particularly on the similarities, differences, affordances, and constraints of the different approaches. We conclude with suggestions for future work on comparing multiple strategies, including the continuing need for the development of, and rigorous evaluation of, curriculum materials and specific instructional techniques that effectively promote comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Common Core State Standards in Mathematics. (2010). Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.

  • Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179. doi:10.1207/s15516709cog2602_1.

    Article  Google Scholar 

  • Alfieri, L., Nokes-Malach, T. J., & Schunn, C. D. (2013). Learning Through Case Comparisons: A Meta-Analytic Review. Educational Psychologist, 48(2), 87–113. doi:10.1080/00461520.2013.775712.

    Article  Google Scholar 

  • Australian Education Ministers (2006). Statements of learning for mathematics. Carlton South Victoria. Australia: Curriculum Corporations.

    Google Scholar 

  • Ball, D. L. (1993). With an Eye on the Mathematical Horizon: Dilemmas of Teaching Elementary School Mathematics. The Elementary School Journal, 93, 373–397.

    Article  Google Scholar 

  • Catrambone, R., & Holyoak, K. J. (1989). Overcoming contextual limitations on problem-solving transfer. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1147–1156. doi:10.1037/0278-7393.15.6.1147.

    Google Scholar 

  • Chi, M. T. H. (2000). Self-explaining: The dual processes of generating inference and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology: Educational design and cognitive science (pp. 161–238). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cho, S., Holyoak, K. J., & Cannon, T. D. (2007). Analogical reasoning in working memory: Resources shared among relational integration, interference resolution, and maintenance. Memory & Cognition, 35(6), 1445–1455. doi:10.3758/BF03193614.

    Article  Google Scholar 

  • Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401–429. doi:10.1007/s10649-014-9532-8.

    Article  Google Scholar 

  • Cummins, D. (1992). Role of analogical reasoning in the induction of problem categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1103–1124. doi:10.1037/0278-7393.18.5.1103.

    Google Scholar 

  • Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206–214. doi:10.1016/j.learninstruc.2011.11.001.

    Article  Google Scholar 

  • Fraivillig, J. L., Murphy, L. A., & Fuson, K. (1999). Advancing children’s mathematical thinking in everyday mathematics classrooms. Journal for Research in Mathematics Education, 30, 148–170. doi:10.2307/749608.

    Article  Google Scholar 

  • Franke, M. L., Turrou, A. C., Webb, N. M., Ing, M., Wong, J., Shin, N., & Fernandez, C. (2015). Student engagement with others’ mathematical ideas: The role of teacher invitation and support moves. The Elementary School Journal, 116(1), 126–148. doi:10.1086/683174.

    Article  Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. doi:10.1207/s15516709cog0702_3.

    Article  Google Scholar 

  • Gentner, D. (1989). The mechanisms of analogical learning. In A. Ortony & S. Vosniadou (Eds.), Similarity and analogical reasoning (pp. 199–241). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding. Journal of Educational Psychology, 95, 393–405. doi:10.1037/0022-0663.95.2.393.

    Article  Google Scholar 

  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38. doi:10.1016/0010-0285(83)90002-6.

    Article  Google Scholar 

  • Guo, J., & Pang, M. F. (2011). Learning a mathematical concept from comparing examples: The importance of variation and prior knowledge. European Journal of Psychology of Education, 26(4), 495–525. doi:10.1007/s10212-011-0060-y.

    Article  Google Scholar 

  • Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., … Kersting, N. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study (NCES 2003-013). US Department of Education. Washington, DC: National Center for Education Statistics.

    Google Scholar 

  • Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62–101. doi:10.5951/jresematheduc.45.1.0062.

    Article  Google Scholar 

  • Johnson, D. W., & Johnson, R. T. (1994). Learning together and alone: Cooperative, competitive and individualistic learning (Vol. 4th). Boston, MA: Allyn and Bacon.

    Google Scholar 

  • Kilpatrick, J., Swafford, J. O., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington DC: National Academy Press.

    Google Scholar 

  • Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797–2822. doi:10.1111/j.1467-8624.1996.tb01889.x.

    Article  Google Scholar 

  • Kullberg, A., Runesson, U., & Marton, F. (2017). What is made possible to learn when using the variation theory of learning in teaching mathematics? ZDM Mathematics Education, 49(4). doi:10.1007/s11858-017-0858-4

  • Kultusministerkonferenz. (2004). Bildungsstandards im Fach Mathematik für den Primarbereich [Educational Standards in Mathematics for Primary Schools]. Neuwied, Germany: Luchterhand.

    Google Scholar 

  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27, 29–63. doi:10.3102/00028312027001029.

    Article  Google Scholar 

  • Loewenstein, J., Thompson, L., & Gentner, D. (1999). Analogical encoding facilitates knowledge transfer in negotiation. Psychonomic Bulletin and Review, 6(4), 586–597. doi:10.3758/BF03212967.

    Article  Google Scholar 

  • Lynch, K., & Star, J. R. (2014a). Exploring teachers’ implementation of comparison in Algebra I. The Journal of Mathematical Behavior, 35, 144–163. doi:10.1016/j.jmathb.2014.07.003.

    Article  Google Scholar 

  • Lynch, K., & Star, J. R. (2014b). Views of struggling students on instruction incorporating multiple strategies in algebra I: an exploratory study. Journal for Research in Mathematics Education, 45(1), 6–18. doi:10.5951/jresematheduc.45.1.0006.

    Article  Google Scholar 

  • Morrison, R. G., Krawczyk, D. C., Holyoak, K. J., Hummel, J. E., Chow, T. W., Miller, B. L., & Knowlton, B. J. (2004). A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. Journal of Cognitive Neuroscience, 16(2), 260–271. doi:10.1162/089892904322984553.

    Article  Google Scholar 

  • Namy, L. L., & Gentner, D. (2002). Making a silk purse out of two sow’s ears: Young children’s use of comparison in category learning. Journal of Experimental Psychology: General, 131(1), 5–15. doi:10.1037/0096-3445.131.1.5.

    Article  Google Scholar 

  • Newton, K. J., & Star, J. R. (2013). Exploring the Nature and Impact of Model Teaching With Worked Example Pairs. Mathematics Teacher Educator, 2(1), 86–102. doi:10.5951/mathteaceduc.2.1.0086.

    Article  Google Scholar 

  • Newton, K. J., Star, J. R., & Lynch, K. (2010). Understanding the development of flexibility in struggling algebra students. Mathematical Thinking and Learning, 12(4), 282–305. doi:10.1080/10986065.2010.482150.

    Article  Google Scholar 

  • Oakes, L. M., & Ribar, R. J. (2005). A Comparison of infants’ categorization in paired and successive presentation familiarization tasks. Infancy, 7(1), 85–98. doi:10.1207/s15327078in0701_7.

    Article  Google Scholar 

  • Oxford English Dictionary. (2016, August 25). Compare [v.2]. Retrieved from http://www.oed.com/view/Entry/37441?rskey=moZ2mC&result=3&isAdvanced=false.

  • Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2004). Analogy use in eighth-grade mathematics classrooms. Cognition and Instruction, 22, 37–60. doi:10.1207/s1532690Xci2201_2.

    Article  Google Scholar 

  • Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94, 249–273. doi:10.1016/j.jecp.2006.02.002.

    Article  Google Scholar 

  • Richland, L. E., Stigler, J. W., & Holyoak, K. J. (2012). Teaching the conceptual structure of mathematics. Educational Psychologist, 47(3), 189–203. doi:10.1080/00461520.2012.667065.

    Article  Google Scholar 

  • Richland, L. E., Zur, O., & Holyoak, K. J. (2007). Cognitive supports for analogies in the mathematics classroom. Science, 316(5828), 1128–1129. doi:10.1126/science.1142103.

    Article  Google Scholar 

  • Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77(1), 1–15. doi:10.1111/j.1467-8624.2006.00852.x.

    Article  Google Scholar 

  • Rittle-Johnson, B., Loehr, A. M., & Durkin, K. (2017). Promoting self-explanation to improve mathematics learning: A meta-analysis and instructional design principles. ZDM Mathematics Education. doi:10.1007/s11858-017-0834-z.

  • Rittle-Johnson, B., Saylor, M., & Swygert, K. E. (2008). Learning from explaining: Does it matter if mom is listening? Journal of Experimental Child Psychology, 100(3), 215–224. doi:10.1016/j.jecp.2007.10.002.

    Article  Google Scholar 

  • Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362. doi:10.1037/0022-0663.93.2.346.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574. doi:10.1037/0022-0663.99.3.561.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Star, J. R. (2009). Compared with what? The effects of different comparisons on conceptual knowledge and procedural flexibility for equation solving. Journal of Educational Psychology, 101, 529–544. doi:10.1037/a0014224.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Star, J. R. (2011). The power of comparison in learning and instruction: learning outcomes supported by different types of comparisons. Psychology of Learning and Motivation-Advances in Research and Theory, 55, 199.

    Article  Google Scholar 

  • Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 101(4), 836–852. doi:10.1037/a0016026.

    Article  Google Scholar 

  • Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: Are novices prepared to learn from comparing procedures? British Journal of Educational Psychology, 82(3), 436–455. doi:10.1111/j.2044-8279.2011.02037.x.

    Article  Google Scholar 

  • Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16, 475–522. doi:10.1207/s1532690xci1604_4.

    Article  Google Scholar 

  • Siegler, R. S., & Chen, Z. (2008). Differentiation and integration: Guiding principles for analyzing cognitive change. Developmental Science, 11(4), 433–448. doi:10.1111/j.1467-7687.2008.00689.x.

    Article  Google Scholar 

  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C., & Strawhun, B. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. Journal of Mathematical Behavior, 24, 287–301. doi:10.1016/j.jmathb.2005.09.009.

    Article  Google Scholar 

  • Singapore Ministry of Education. (2006). Secondary mathematics syllabuses. Curriculum planning and development division. Retrieved from http://www.moe.gov.sg/education/syllabuses/sciences/files/maths-secondary.pdf.

  • Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36, 404–411.

    Google Scholar 

  • Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015). Student, teacher, and instructional characteristics related to students’ gains in flexibility. Contemporary Educational Psychology, 41, 198–208. doi:10.1016/j.cedpsych.2015.03.001.

    Article  Google Scholar 

  • Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 41–54. doi:10.1016/j.cedpsych.2014.05.005.

    Article  Google Scholar 

  • Star, J. R., & Rittle-Johnson, B. (2009). It pays to compare: An experimental study on computational estimation. Journal of Experimental Child Psychology, 102, 408–426. doi:10.1016/j.jecp.2008.11.004.

    Article  Google Scholar 

  • Star, J. R., Rittle-Johnson, B., & Durkin, K. (2016). Comparison and explanation of multiple strategies: One example of a small step forward for improving mathematics education. Policy Insights from the Behavioral and Brain Sciences. doi:10.1177/2372732216655543.

    Google Scholar 

  • Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313–340. doi:10.1080/10986060802229675.

    Article  Google Scholar 

  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press.

    Google Scholar 

  • Treffers, A. (1991). Realistic mathematics education in the Netherlands 1980–1990. In L. Streefland (Ed.), Realistic mathematics education in primary school (pp. 11–20). Utrecht, Netherlands: Freudenthal Institute.

    Google Scholar 

  • Tyminski, A. M., Zambak, V. S., Drake, C., & Land, T. J. (2014). Using representations, decomposition, and approximations of practices to support prospective elementary mathematics teachers’ practice of organizing discussions. Journal of Mathematics Teacher Education, 17(5), 463–487. doi:10.1007/s10857-013-9261-4.

    Article  Google Scholar 

  • VanderStoep, S. W., & Seifert, C. M. (1993). Learning “how” versus learning “when”: Improving transfer of problem-solving principles. Journal of the Learning Sciences, 3(1), 93–111. doi:10.1207/s15327809jls0301_3.

    Article  Google Scholar 

  • Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to structure sense-making. Mathematical Thinking and Learning, 8(2), 91–111.

    Article  Google Scholar 

  • Webb, N. M. (1991). Task-related verbal interaction and mathematics learning in small groups. Journal for Research in Mathematics Education, 22(5), 366–389. doi:10.2307/749186.

    Article  Google Scholar 

  • Webb, N. M., Franke, M. L., Ing, M., Wong, J., Fernandez, C. H., Shin, N., & Turrou, A. C. (2014). Engaging with others’ mathematical ideas: Interrelationships among student participation, teachers’ instructional practices, and learning. International Journal of Educational Research, 63, 79–93. doi:10.1016/j.ijer.2013.02.001.

    Article  Google Scholar 

  • Woodward, J., Beckmann, S., Driscoll, M., Franke, M. L., Herzig, P., Jitendra, A. K., … Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8: A practice guide. Washington, D. C.: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U. S. Department of Education.

    Google Scholar 

  • Ziegler, E., & Stern, E. (2014). Delayed benefits of learning elementary algebraic transformations through contrasted comparisons. Learning and Instruction, 33, 131–146. doi:10.1016/j.learninstruc.2014.04.006.

    Article  Google Scholar 

  • Ziegler, E., & Stern, E. (2016). Consistent advantages of contrasted comparisons: Algebra learning under direct instruction. Learning and Instruction, 41, 41–51. doi:10.1016/j.learninstruc.2015.09.006.

    Article  Google Scholar 

Download references

Acknowledgements

Much of the research reported in this article was supported by grants from the National Science Foundation (DRL0814571) and the Institute of Education Sciences (R305H050179); the ideas in this paper are those of the authors and do not represent official positions of NSF or IES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelley Durkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durkin, K., Star, J.R. & Rittle-Johnson, B. Using comparison of multiple strategies in the mathematics classroom: lessons learned and next steps. ZDM Mathematics Education 49, 585–597 (2017). https://doi.org/10.1007/s11858-017-0853-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0853-9

Keywords

Navigation