Skip to main content
Log in

Natural number bias in operations with missing numbers

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This study investigates the hypothesis that there is a natural number bias that influences how students understand the effects of arithmetical operations involving both Arabic numerals and numbers that are represented by symbols for missing numbers. It also investigates whether this bias correlates with other aspects of students’ understanding of the number concept beyond natural numbers. Natural number bias has been characterized as the interference of natural number knowledge in reasoning about non-natural numbers. Quantitative data is presented showing that in the case of operations between numbers and missing numbers this bias acts in two main ways. First, it shapes students’ anticipations about the expected outcome of each operation, that is, that the result of addition or multiplication “must” be bigger than the initial numbers and the result of subtraction or division “must” be smaller. Second, it causes students to think that missing numbers stand mostly for natural numbers; this tendency would lead students to make decisions about the general results of operations by substituting only natural numbers for the missing number symbols. It is argued that knowledge about operations between natural numbers needs to be inhibited for students to overcome the natural number bias and to reason with numbers beyond the scope of natural numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babai, R., Shalev, E., & Stavy, R. (2015). A warning intervention improves students’ ability to overcome intuitive interference. ZDM Mathematics Education, 47(5) (this issue).

  • Bell, A., Swan, M., & Taylor, G. (1981). Choice of operation in verbal problems with decimal numbers. Educational Studies in Mathematics, 12, 399–420. doi:10.1007/BF00308139.

    Article  Google Scholar 

  • Christou, K. P. (2012). Helping students remedy the phenomenal sign bias: the case of a refutational lecture. In C. Prachalias (Ed.), Proceedings of the 8th International Conference on Education (pp. 643–648). Greece: Samos.

    Google Scholar 

  • Christou, K. P. The dual aspect of natural numbers bias in arithmetic operations (submitted).

  • Christou, K. P., & Vosniadou, S. (2005). How students interpret literal symbols in algebra: a conceptual change approach. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), XXVII Annual Conference of the Cognitive Science Society (pp. 453–458). Italy: Stresa.

    Google Scholar 

  • Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning, 14(1), 1–27. doi:10.1080/10986065.2012.625074.

    Article  Google Scholar 

  • Davis, R. B. (1984). Learning mathematics: the cognitive science approach to mathematics education. London: Croom Helm.

    Google Scholar 

  • De Corte, E., Verschaffel, L., & Pauwels, A. (1990). Influence of the semantic structure of word problems on second graders’ eye movements. Journal of Educational Psychology, 82(2), 359–365. doi:10.1037/0022-0663.82.2.359.

    Article  Google Scholar 

  • DeWolf, M., & Vosniadou, S. (2014). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, Advance online publication.,. doi:10.1016/j.learninstruc.2014.07.002.

    Google Scholar 

  • Fischbein, E. (1990). Intuition and information processing in mathematical activity. International Journal of Educational Research, 14(1), 31–50. doi:10.1016/0883-0355(90)90015-Z.

    Article  Google Scholar 

  • Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving problems in multiplication and division. Journal of Research in Mathematics Education, 16, 3–17. doi:10.2307/748969.

    Article  Google Scholar 

  • Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology, 21, 27–37. doi:10.1016/S0193-3973(99)00048-9.

    Article  Google Scholar 

  • Graeber, A. O., Tirosh, D., & Glover, R. (1989). Preservice teachers’ misconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20, 95–102. doi:10.2307/749100.

    Article  Google Scholar 

  • Green, M., Piel, J. A., & Flowers, C. (2008). Reversing education majors’ arithmetic misconceptions with short-term instruction using manipulatives. The Journal of Educational Research, 101(4), 234–242. doi:10.3200/JOER.101.4.234-242.

    Article  Google Scholar 

  • Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education, 18(1), 37–45. doi:10.2307/749535.

    Article  Google Scholar 

  • Greer, B. (1989). Conceptual obstacles to the development of the concepts of multiplication and division. In H. Mandl, E. De Corte, S. N. Bennet, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context (Vol. 2, pp. 461–476). Oxford: Pergamon.

    Google Scholar 

  • Hannula, M. S., Pehkonen, E., Maijala, H., & Soro, R. (2006). Levels of students’ understanding on infinity. Teaching Mathematics and Computer Science, 4(2), 317–337.

    Google Scholar 

  • Harel, G., Behr, M., Post, T., & Lesh, R. (1994). The impact of number type on the solution of multiplication and division problems: further considerations. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 365–388). Albany: SUNY Press.

    Google Scholar 

  • Harel, G., & Confrey, J. (1994). The development of multiplicative reasoning in the learning of mathematics. Albany: SUNY Press.

    Google Scholar 

  • Hart, K. M. (1981). Children’s understanding of mathematics: 11–16. London: John Murray.

    Google Scholar 

  • Hartnett, P. M., & Gelman, R. (1998). Early understandings of number: paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341–374. doi:10.1016/S0959-4752(97)00026-1.

    Article  Google Scholar 

  • Hynd, C. R. (2001). Refutational texts and the change process. International Journal of Educational Research, 35, 699–714. doi:10.1016/S0883-0355(02)00010-1.

    Article  Google Scholar 

  • MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. Psychology of Learning and Motivation, 43, 163–215.

    Article  Google Scholar 

  • Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: understanding the real numbers. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 233–258). Dordrecht: Kluwer.

    Google Scholar 

  • Moss, J. (2005). Pipes, tubes, and beakers: new approaches to teaching the rational-number system. In S. Donovan & J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 309–349). Washington, DC: National Academy Press.

    Google Scholar 

  • Nesher, P., & Peled, I. (1986). Shifts in reasoning. Educational Studies in Mathematics, 17(1), 67–79. doi:10.1007/bf00302379.

    Article  Google Scholar 

  • Ni, Y. J., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: the origins and implications of whole number bias. Educational Psychologist, 40(1), 27–52. doi:10.1207/s15326985ep4001_3.

    Article  Google Scholar 

  • Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72. doi:10.1016/j.learninstruc.2013.05.003.

    Article  Google Scholar 

  • Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: the case of decimal fractions. Journal for Research in Mathematics Education, 20, 8–27. doi:10.2307/749095.

    Article  Google Scholar 

  • Rips, L. J., Blomfield, A., & Asmuth, J. (2008). From numerical concepts to concepts of number. Behavioral and Brain Sciences, 31, 623–642. doi:10.1017/S0140525X08005566.

    Article  Google Scholar 

  • Smith, C. L., Solomon, G. E. A., & Carey, S. (2005). Never getting to zero: elementary school students’understanding of the infinite divisibility of number and matter. Cognitive Psychology, 51, 101–140. doi:10.1016/j.cogpsych.2005.03.001.

    Article  Google Scholar 

  • Stacey, K., & Steinle, V. (1999). A longitudinal study of children’s thinking about decimals: a preliminary analysis. Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 4–217).

  • Stafylidou, S., & Vosniadou, S. (2004). Students’ understanding of the numerical value of fractions: a conceptual change approach. Learning and Instruction, 14, 503–518. doi:10.1016/j.learninstruc.2004.06.015.

    Article  Google Scholar 

  • Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior, 20, 267–307. doi:10.1016/S0732-3123(02)00075-5.

    Article  Google Scholar 

  • Thompson, P. W., & Saldanha, L. A. (2003). Fractions and multiplicative reasoning. In J. Kilpatrick, W. Gary Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 95–113). Reston: The National Council of Teachers of Mathematics.

  • Tirosh, D., Tsamir, P., & Hershkovitz, S. (2008). Insights into children’s intuitions of addition, subtraction, multiplication, and division. In A. Cockburn & G. Littler (Eds.), Mathematical misconceptions (pp. 54–70). London: Sage.

    Google Scholar 

  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31, 344–355. doi:10.1016/j.jmathb.2012.02.001.

    Article  Google Scholar 

  • Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2013). Brief report. Educated adults are still affected by intuitions about the effect of arithmetical operations: evidence from a reaction-time study. Educational Studies in Mathematics, 82(2), 323–330. doi:10.1007/s10649-012-9432-8.

    Article  Google Scholar 

  • Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181–209.

    Article  Google Scholar 

  • Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM Mathematics Education, 47(5) (this issue). doi:10.1007/s11858-014-0650-7.

  • Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2014). In search for the natural number bias in secondary school students’ interpretation of the effect of arithmetical operations. Learning and Instruction (Advance online publication).,. doi:10.1016/j.learninstruc.2014.03.004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos P. Christou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christou, K.P. Natural number bias in operations with missing numbers. ZDM Mathematics Education 47, 747–758 (2015). https://doi.org/10.1007/s11858-015-0675-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0675-6

Keywords

Navigation