Skip to main content
Log in

Novel Architected Material for Cardiac Patches

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) can lead to scar tissue formation and even heart failure. Cardiac patches are a promising technology to strengthen scar tissue post-MI. In this work, we introduce a novel periodic architected material (PAM) for potential use as cardiac patches to prevent aneurysm. The PAM is formed by a set of triangular architectures that rotate as stretching is applied. Using a combination of analytical, computational, and experimental methods, we analyze the mechanical aspects and design of the rotating triangles PAM. We demonstrate that this new material can produce localized deformation in the heart tissue and improve the force generation in the infarcted tissue. Furthermore, we show that the mechanical behavior of the rotating triangles PAM can be easily tuned, facilitating the match between the mechanical behavior of the myocardium and the cardiac patch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.S. Virani, A. Alonso, E.J. Benjamin, M.S. Bittencourt, C.W. Callaway, A.P. Carson, A.M. Chamberlain, A.R. Chang, S. Cheng, F.N. Delling, L. Djousse, M.S.V. Elkind, J.F. Ferguson, M. Fornage, S.S. Khan, B.M. Kissela, K.L. Knutson, T.W. Kwan, D.T. Lackland, T.T. Lewis, J.H. Lichtman, C.T. Longenecker, M.S. Loop, P.L. Lutsey, S.S. Martin, K. Matsushita, A.E. Moran, M.E. Mussolino, A.M. Perak, W.D. Rosamond, G.A. Roth, U.K.A. Sampson, G.M. Satou, E.B. Schroeder, S.H. Shah, C.M. Shay, N.L. Spartano, A. Stokes, D.L. Tirschwell, L.B. Vanwagner, C.W. Tsao, and V. Chair, Circulation 141, 139. (2020).

    Google Scholar 

  2. S. McMahan, A. Taylor, K.M. Copeland, Z. Pan, J. Liao, and Y. Hong, J. Biomed. Mater. Res. Part A 108, 972. (2020).

    Article  Google Scholar 

  3. R.J. Jabbour, T.J. Owen, P. Pandey, and S.E. Harding, Expert Rev. Med. Devices 17, 1. (2020).

    Article  Google Scholar 

  4. K. Huang, E. W. Ozpinar, T. Su, J. Tang, D. Shen, L. Qiao, S. Hu, Z. Li, H. Liang, K. Mathews, V. Scharf, D. O. Freytes, and K. Cheng, Sci. Transl. Med. 12, (2020).

  5. K.L. Fujimoto, K. Tobita, W.D. Merryman, J. Guan, N. Momoi, D.B. Stolz, M.S. Sacks, B.B. Keller, and W.R. Wagner, J. Am. Coll. Cardiol. 49, 2292. (2007).

    Article  Google Scholar 

  6. G.M. Fomovsky, S.A. Clark, K.M. Parker, G. Ailawadi, and J.W. Holmes, Circ. Hear. Fail. 5, 515. (2012).

    Article  Google Scholar 

  7. A.P. Voorhees, and H.C. Han, Theor. Biol. Med. Model. 11, 6. (2014).

    Article  Google Scholar 

  8. A. P. Voorhees and H.-C. Han, in Compr. Physiol. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2015), pp. 1623–1644.

  9. Y. Guo, Q.C. Zeng, C.Q. Zhang, X.Z. Zhang, R.X. Li, J.M. Wu, J. Guan, L. Liu, X.C. Zhang, J.Y. Li, and Z.M. Wan, Int. J. Med. Sci. 10, 1837. (2013).

    Article  Google Scholar 

  10. K.M. Herum, J. Choppe, A. Kumar, A.J. Engler, and A.D. McCulloch, Mol. Biol. Cell 28, 1871. (2017).

    Article  Google Scholar 

  11. F. Barthelat, Int. Mater. Rev. 60, 413. (2015).

    Article  Google Scholar 

  12. N. A. Fleck, V. S. Deshpande, and M. F. Ashby, Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495 (2010).

  13. M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, Nat. Rev. Phys. 1 (2019).

  14. A.A. Zadpoor, Mater. Horizons 3, 371. (2016).

    Article  Google Scholar 

  15. W. Bian, C. P. Jackman, and N. Bursac, Biofabrication 6, (2014).

  16. G.C. Engelmayr, M. Cheng, C.J. Bettinger, J.T. Borenstein, R. Langer, and L.E. Freed, Nat. Mater. 7, 1003. (2008).

    Article  Google Scholar 

  17. M. Kapnisi, C. Mansfield, C. Marijon, A.G. Guex, F. Perbellini, I. Bardi, E.J. Humphrey, J.L. Puetzer, D. Mawad, D.C. Koutsogeorgis, D.J. Stuckey, C.M. Terracciano, S.E. Harding, and M.M. Stevens, Adv. Funct. Mater. 28, 1800618. (2018).

    Article  Google Scholar 

  18. H. Park, B.L. Larson, M.D. Guillemette, S.R. Jain, C. Hua, G.C. Engelmayr, and L.E. Freed, Biomaterials 32, 1856. (2011).

    Article  Google Scholar 

  19. M. Montgomery, S. Ahadian, L. Davenport Huyer, M. Lo Rito, R. A. Civitarese, R. D. Vanderlaan, J. Wu, L. A. Reis, A. Momen, S. Akbari, A. Pahnke, R. K. Li, C. A. Caldarone, and M. Radisic, Nat. Mater. 16, 1038 (2017).

  20. R.A. Neal, A. Jean, H. Park, P.B. Wu, J. Hsiao, G.C. Engelmayr, R. Langer, and L.E. Freed, Tissue Eng. - Part A 19, 793. (2013).

    Article  Google Scholar 

  21. J.N. Grima, and K.E. Evans, J. Mater. Sci. Lett. 19, 1563. (2000).

    Article  Google Scholar 

  22. D. Attard, R. Caruana-Gauci, R. Gatt, and J. N. Grima, Phys. Status Solidi Basic Res. (2016).

  23. J.N. Grima-Cornish, J.N. Grima, and D. Attard, Materials (Basel). 13, 79. (2019).

    Article  Google Scholar 

  24. X. Q. Zhou, L. Zhang, and L. Yang, Chinese Phys. B (2017).

  25. W. Yang, Z. Gao, Z. Yue, X. Li, and B. Xu, Proc. R. Soc. A Math. Phys. Eng. Sci. 475, (2019).

  26. M.W. Curtis, and B. Russell, Pflugers Arch. Eur J. Physiol. 462, 105. (2011).

    Article  Google Scholar 

  27. S.C. Baxter, M.O. Morales, and E.C. Goldsmith, Cell Biochem. Biophys. 51, 33. (2008).

    Article  Google Scholar 

  28. ASTM, ASTM B. Stand. 1 (2015).

  29. A. D. Kammers, S. Daly, X. X. Xu, Y. Su, Y. Cai, T. H. T. Cheng, Q. Q. Zhang, G. F. Bomarito, J. D. Hochhalter, T. J. Ruggles, A. H. Cannon, Z. Y. Wang, H. Q. Li, J. W. Tong, J. T. Ruan, P. L. Reu, W. Sweatt, T. Miller, D. Fleming, A. Guery, F. Latourte, F. Hild, S. Roux, K. Triconnet, K. Derrien, F. Hild, D. Baptiste, S. Ma, J. J. H. L. Pang, Q. Ma, X. Shao, X. Dai, X. He, F. F. Q. Zhong, C. G. Quan, Z. Chen, X. Shao, X. X. Xu, X. He, B. Pan, Z. Lu, H. M. Xie, Z. Chen, C. G. Quan, F. Zhu, X. He, F. F. Q. Zhong, P. P. Indurkar, C. G. Quan, J. Park, S. Yoon, T. H. Kwon, K. Park, Y. Su, Q. Q. Zhang, X. X. Xu, Z. Gao, H. W. Schreier, J. J. Orteu, M. A. M. A. Sutton, W. Shih, H. Yu, R. Guo, H. Xia, F. Yan, Y. Zhang, T. He, H. W. Schreier, J. R. Braasch, M. A. M. A. Sutton, B. Pan, H. M. Xie, B. Q. Xu, F. L. Dai, Y. Su, Q. Q. Zhang, Z. Gao, X. X. Xu, X. Wu, S. Vajda, A. Chung, B. Pan, K. Qian, H. M. Xie, A. Asundi, Z. Y. Wang, L. Luu, Z. Y. Wang, M. Vo, T. Hoang, J. Ma, T. Hua, H. M. Xie, S. Wang, Z. Hu, P. Chen, Q. Q. Zhang, S. Yaofeng, J. J. H. L. Pang, B. Pan, H. M. Xie, F. L. Dai, M. A. M. A. Sutton, W. Wolters, W. Peters, W. Ranson, S. McNeill, X. Y. Liu, R. L. Li, H. W. Zhao, T. H. T. Cheng, G. J. Cui, Q. C. Tan, G. W. Meng, Y. Q. Wang, M. A. M. A. Sutton, H. A. Bruck, H. W. Schreier, I. Correlated Solutions, D. Lecompte, A. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, and A. M. Habraken, Meas. Sci. Technol. 23, 1615 (2015).

  30. Y.M. Tseytlin, Rev. Sci. Instrum. 73, 3363. (2002).

    Article  Google Scholar 

  31. M. Palanca, G. Tozzi, and L. Cristofolini, Int. Biomech. 3, 1. (2016).

    Article  Google Scholar 

  32. M.N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, Mech. Syst. Signal Process. 25, 917. (2011).

    Article  Google Scholar 

  33. M. Nguyen-Truong and Z. Wang, in Adv. Exp. Med. Biol. (Springer New York LLC, 2018), pp. 1–19.

  34. P. Ferraiuoli, B. Kappler, S. van Tuijl, M. Stijnen, B.A.J.M. de Mol, J.W. Fenner, and A.J. Narracott, J. Mech. Behav. Biomed. Mater. 91, 294. (2019).

    Article  Google Scholar 

  35. P. Ferraiuoli, L.S. Fixsen, B. Kappler, R.G.P. Lopata, J.W. Fenner, and A.J. Narracott, Med. Eng. Phys. 74, 146. (2019).

    Article  Google Scholar 

  36. A. Soltani, J. Lahti, K. Järvelä, J. Laurikka, V.-T. Kuokkala, and M. Hokka, Comput. Methods Biomech. Biomed. Engin. 23, 103. (2020).

    Article  Google Scholar 

  37. A. Soltani, J. Lahti, K. Järvelä, S. Curtze, J. Laurikka, M. Hokka, and V.T. Kuokkala, Sci. Rep. 8, 1. (2018).

    Article  Google Scholar 

  38. O. Gültekin, G. Sommer, and G.A. Holzapfel, Comput. Methods Biomech. Biomed. Engin. 19, 1647. (2016).

    Article  Google Scholar 

  39. B. Bhana, R.K. Iyer, W.L.K. Chen, R. Zhao, K.L. Sider, M. Likhitpanichkul, C.A. Simmons, and M. Radisic, Biotechnol. Bioeng. 105, 1148. (2010).

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the San Antonio Area Foundation, Biomedical Research Grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Chao Han or David Restrepo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincon Tabares, J.S., Velásquez, J.C., Bilbo, H. et al. Novel Architected Material for Cardiac Patches. JOM 73, 1765–1773 (2021). https://doi.org/10.1007/s11837-021-04647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04647-5

Navigation