Skip to main content
Log in

Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cells of the myocardium are at home in one of the most mechanically dynamic environments in the body. At the cellular level, pulsatile stimuli of chamber filling and emptying are experienced as cyclic strains (relative deformation) and stresses (force per unit area). The intrinsic characteristics of tension-generating myocytes and fibroblasts thus have a continuous mechanical interplay with their extrinsic surroundings. This review explores the ways that the micromechanics at the scale of single cardiac myocytes and fibroblasts have been measured, modeled, and recapitulated in vitro in the context of adaptation. Both types of cardiac cells respond to externally applied strain, and many of the intracellular mechanosensing pathways have been identified with the careful manipulation of experimental variables. In addition to strain, the extent of loading in myocytes and fibroblasts is also regulated by cues from the microenvironment such as substrate surface chemistry, stiffness, and topography. Combinations of these structural cues in three dimensions are needed to mimic the micromechanical complexity derived from the extracellular matrix of the developing, healthy, or pathophysiologic heart. An understanding of cardiac cell micromechanics can therefore inform the design and composition of tissue engineering scaffolds or stem cell niches for future applications in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

1D:

One dimension

2D:

Two dimensions

3D:

Three dimensions

AFM:

Atomic force microscopy

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

MLP:

Muscle LIM protein

References

  1. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, Kadowaki T, Yazaki Y (1999) Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res 84(4):458–66

    PubMed  CAS  Google Scholar 

  2. Allen DG, Kentish JC (1985) The cellular basis of the length–tension relation in cardiac muscle. J Mol Cell Cardiol 17(9):821–40

    Article  PubMed  CAS  Google Scholar 

  3. Amundsen BH, Crosby J, Steen PA, Torp H, Slørdahl SA, Støylen A (2009) Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. Eur J Echocardiogr 10(2):229–37

    PubMed  Google Scholar 

  4. Arts T, Costa KD, Covell JW, McCulloch AD (2001) Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 280(5):H2222–9

    PubMed  CAS  Google Scholar 

  5. Ayala P, Lopez JI, Desai TA (2010) Microtopographical Cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration. Tissue Eng Part A [Epub ahead of print]

  6. Azeloglu EU, Costa KD (2010) Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. Am J Physiol Heart Circ Physiol 298(3):H853–60

    Article  PubMed  CAS  Google Scholar 

  7. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–72

    Article  PubMed  CAS  Google Scholar 

  8. Balestrini JL, Skorinko JK, Hera A, Gaudette GR, Billiar KL (2010) Applying controlled non-uniform deformation for in vitro studies of cell mechanobiology. Biomech Model Mechanobiol 9(3):329–44

    Article  PubMed  Google Scholar 

  9. Bang ML, Mudry RE, McElhinny AS, Trombitás K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 153(2):413–27

    Article  PubMed  CAS  Google Scholar 

  10. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75(4):2038–49

    Article  PubMed  CAS  Google Scholar 

  11. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–203

    Article  PubMed  CAS  Google Scholar 

  12. Bian W, Liau B, Badie N, Bursac N (2009) Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4(10):1522–34

    Article  PubMed  CAS  Google Scholar 

  13. Bischofs IB, Klein F, Lehnert D, Bastmeyer M, Schwarz US (2008) Filamentous network mechanics and active contractility determine cell and tissue shape. Biophys J 95(7):3488–96

    Article  PubMed  CAS  Google Scholar 

  14. Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100(16):9274–9

    Article  PubMed  CAS  Google Scholar 

  15. Blanchard GB, Kabla AJ, Schultz NL, Butler LC, Sanson B, Gorfinkiel N, Mahadevan L, Adams RJ (2009) Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat Methods 6(6):458–64

    Article  PubMed  CAS  Google Scholar 

  16. Bloch RJ, Gonzalez-Serratos H (2003) Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31(2):73–8

    Article  PubMed  Google Scholar 

  17. Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B (2009) Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4):426–35

    Article  PubMed  CAS  Google Scholar 

  18. Bovendeerd PH, Arts T, Huyghe JM, van Campen DH, Reneman RS (1992) Dependence of local left ventricular wall mechanics on myocardial fiber orientation: a model study. J Biomech 25(10):1129–40

    Article  PubMed  CAS  Google Scholar 

  19. Brady AJ (1991) Mechanical properties of isolated cardiac myocytes. Physiol Rev 71(2):413–28

    PubMed  CAS  Google Scholar 

  20. Bray MA, Sheehy SP, Parker KK (2008) Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton 65(8):641–51

    Article  PubMed  Google Scholar 

  21. Byron KL, Puglisi JL, Holda JR, Eble D, Samarel AM (1996) Myosin heavy chain turnover in cultured neonatal rat heart cells: effects of [Ca2+]i and contractile activity. Am J Physiol 271(5 Pt 1):C01447–56

    PubMed  CAS  Google Scholar 

  22. Chapelle D, Clément F, Génot F, Tallec PL, Sorine M, Urquiza J (2001) A physiologically-based model for the active cardiac muscle contraction. Lect Notes Comput Sci 2230:128–133

    Article  Google Scholar 

  23. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14(3):356–63

    Article  PubMed  CAS  Google Scholar 

  24. Clerk A, Sugden PH (2006) Ras: the stress and the strain. J Mol Cell Cardiol 41(4):595–600

    Article  PubMed  CAS  Google Scholar 

  25. Couade M, Pernot M, Messas E, Bel A, Ba M, Albert H, Fink M, Tanter M (2011) In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans Med Imaging (Epub ahead of print)

  26. Cranston PG, Veldhuis JH, Narasimhan S, Brodland GW (2010) Cinemechanometry (CMM): a method to determine the forces that drive morphogenetic movements from time-lapse images. Ann Biomed Eng 38(9):2937–47

    Article  PubMed  Google Scholar 

  27. Cupps BP, Taggar AK, Reynolds LM, Lawton JS, Pasque MK (2010) Regional myocardial contractile function: multiparametric strain mapping. Interact Cardiovasc Thorac Surg 10(6):953–7

    Article  PubMed  Google Scholar 

  28. Curtis MW, Sharma S, Desai TA, Russell B (2010) Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D. Biomed Microdevices 12(6):1073–85

    Article  PubMed  CAS  Google Scholar 

  29. Dalla Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W Jr, Franchini KG (2010) FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res 86(3):421–31

    Article  PubMed  CAS  Google Scholar 

  30. De R, Zemel A, Safran SA (2008) Do cells sense stress or strain? Measurement of cellular orientation can provide a clue. Biophys J 94(5):L29–31

    Article  PubMed  CAS  Google Scholar 

  31. de Simone G, de Divitiis O (2002) Extracellular matrix and left ventricular mechanics in overload hypertrophy. Adv Clin Path 6(1):3–10

    PubMed  Google Scholar 

  32. de Tombe PP (2003) Cardiac myofilaments: mechanics and regulation. J Biomech 36(5):721–30

    PubMed  Google Scholar 

  33. de Tombe PP, ter Keurs HE (1992) An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 454:619–42

    PubMed  Google Scholar 

  34. Delbridge LM, Roos KP (1997) Optical methods to evaluate the contractile function of unloaded isolated cardiac myocytes. J Mol Cell Cardiol 29(1):11–25

    Article  PubMed  CAS  Google Scholar 

  35. D'hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1(3):154–70

    Article  PubMed  Google Scholar 

  36. Domke J, Parak WJ, George M, Gaub HE, Radmacher M (1999) Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. Eur Biophys J 28(3):179–86

    Article  PubMed  CAS  Google Scholar 

  37. Dumbauld DW, Shin H, Gallant ND, Michael KE, Radhakrishna H, García AJ (2010) Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J Cell Physiol 223(3):746–56

    PubMed  CAS  Google Scholar 

  38. Duszyk M, Schwab B 3rd, Zahalak GI, Qian H, Elson EL (1989) Cell poking: quantitative analysis of indentation of thick viscoelastic layers. Biophys J 55(4):683–90

    Article  PubMed  CAS  Google Scholar 

  39. Eastwood M, Mudera VC, McGrouther DA, Brown RA (1998) Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil Cytoskeleton 40(1):13–21

    Article  PubMed  CAS  Google Scholar 

  40. Eble DM, Qi M, Waldschmidt S, Lucchesi PA, Byron KL, Samarel AM (1998) Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am J Physiol 274(5 Pt 1):C1226–37

    PubMed  CAS  Google Scholar 

  41. Ehler E, Horowits R, Zuppinger C, Price RL, Perriard E, Leu M, Caroni P, Sussman M, Eppenberger HM, Perriard JC (2001) Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 153(4):763–72

    Article  PubMed  CAS  Google Scholar 

  42. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22):3794–802

    Article  PubMed  CAS  Google Scholar 

  43. Evans HJ, Sweet JK, Price RL, Yost M, Goodwin RL (2003) Novel 3D culture system for study of cardiac myocyte development. Am J Physiol Heart Circ Physiol 285(2):H570–8

    PubMed  CAS  Google Scholar 

  44. Feng Z, Matsumoto T, Nakamura T (2003) Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J Artif Organs 6(3):192–6

    Article  PubMed  CAS  Google Scholar 

  45. Fomovsky GM, Holmes JW (2010) Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am J Physiol Heart Circ Physiol 298(1):H221–8

    Article  PubMed  CAS  Google Scholar 

  46. Fomovsky GM, Thomopoulos S, Holmes JW (2010) Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 48(3):490–6

    Article  PubMed  CAS  Google Scholar 

  47. Fung YC (1971) Comparison of different models of the heart muscle. J Biomech 4(4):289–95

    Article  PubMed  CAS  Google Scholar 

  48. Geisse NA, Sheehy SP, Parker KK (2009) Control of myocyte remodeling in vitro with engineered substrates. Vitro Cell Dev Biol Anim 45(7):343–50

    Article  Google Scholar 

  49. Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, Ren XD, Rafailovich M, Clark RA (2007) Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28(4):671–9

    Article  PubMed  CAS  Google Scholar 

  50. Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3):433–42

    Article  PubMed  Google Scholar 

  51. Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD (2003) Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 81(5):578–87

    Article  PubMed  CAS  Google Scholar 

  52. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94(3):284–95

    Article  PubMed  CAS  Google Scholar 

  53. Grinnell F (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10(9):362–5

    Article  PubMed  CAS  Google Scholar 

  54. Gupta KB, Ratcliffe MB, Fallert MA, Edmunds LH Jr, Bogen DK (1994) Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89(5):2315–26

    PubMed  CAS  Google Scholar 

  55. Harris PJ, Stewart D, Cullinan MC, Delbridge LM, Dally LJ, Grinwald P (1987) Rapid measurement of isolated cardiac muscle cell length using a line-scan camera. IEEE Trans Biomed Eng 34(1):463–467

    Article  PubMed  CAS  Google Scholar 

  56. Haworth RA, Griffin P, Saleh B, Goknur AB, Berkoff HA (1987) Contractile function of isolated young and adult rat heart cells. Am J Physiol 253(1):H1484–H1491

    PubMed  CAS  Google Scholar 

  57. Hill AV (1950) The series elastic component of muscle. Proc R Soc Lond B Biol Sci 137(887):273–80

    Article  PubMed  CAS  Google Scholar 

  58. Holmes JW, Nuñez JA, Covell JW (1997) Functional implications of myocardial scar structure. Am J Physiol 272(5 Pt 2):H2123–30

    PubMed  CAS  Google Scholar 

  59. Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Transact A Math Phys Eng Sci 367(1902):3445–75

    Article  PubMed  Google Scholar 

  60. Hoshijima M (2006) Mechanical stress–strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 290(4):H1313–25

    PubMed  CAS  Google Scholar 

  61. Hsu HJ, Lee CF, Locke A, Vanderzyl SQ, Kaunas R (2010) Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS One 5(8):e12470

    Article  PubMed  CAS  Google Scholar 

  62. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305

    Article  PubMed  CAS  Google Scholar 

  63. Huang J, Peng X, Qin L, Zhu T, Xiong C, Zhang Y, Fang J (2009) Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution. J Biomech Eng 131(6):061009

    Article  PubMed  Google Scholar 

  64. Hunter PJ, McCulloch AD, ter Keurs HE (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69(2–3):289–331

    Article  PubMed  CAS  Google Scholar 

  65. Huntsman LL, Day SR, Stewart DK (1977) Nonuniform contraction in the isolated cat papillary muscle. Am J Physiol 233(5):H613–6

    PubMed  CAS  Google Scholar 

  66. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173(4412):971–3

    Article  PubMed  CAS  Google Scholar 

  67. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–99

    Article  PubMed  CAS  Google Scholar 

  68. Iribe G, Helmes M, Kohl P (2007) Force–length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol Heart Circ Physiol 292(3):H1487–97

    PubMed  CAS  Google Scholar 

  69. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95(7):3479–87

    Article  PubMed  CAS  Google Scholar 

  70. Kajzar A, Cesa CM, Kirchgessner N, Hoffmann B, Merkel R (2008) Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars. Biophys J 94(5):1854–66

    Article  PubMed  CAS  Google Scholar 

  71. Kamgoué A, Ohayon J, Usson Y, Riou L, Tracqui P (2009) Quantification of cardiomyocyte contraction based on image correlation analysis. Cytom A 75(4):298–308

    Article  Google Scholar 

  72. Katz AM (2010) Physiology of the heart. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  73. King NM, Methawasin M, Nedrud J, Harrell N, Chung CS, Helmes M, Granzier H (2011) Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells. J Gen Physiol 137(1):81–91

    PubMed  CAS  Google Scholar 

  74. Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111(7):943–55

    Article  PubMed  Google Scholar 

  75. Krieg M, Arboleda-Estudillo Y, Puech PH, Käfer J, Graner F, Müller DJ, Heisenberg CP (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10(4):429–36

    Article  PubMed  CAS  Google Scholar 

  76. Kroon W, Delhaas T, Bovendeerd P, Arts T (2009) Computational analysis of the myocardial structure: adaptation of cardiac myofiber orientations through deformation. Med Image Anal 13(2):346–53

    Article  PubMed  Google Scholar 

  77. Krueger JW, Forletti D, Wittenberg BA (1980) Uniform sarcomere shortening behavior in isolated cardiac muscle cells. J Gen Physiol 76(1):587–607

    Article  PubMed  CAS  Google Scholar 

  78. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53(1):1552–73

    Article  CAS  Google Scholar 

  79. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–73

    Article  PubMed  CAS  Google Scholar 

  80. Lee CH, Guo CL, Wang J (1998) Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation. Opt Lett 23(4):307–9

    Article  PubMed  CAS  Google Scholar 

  81. Legant WR, Miller JS, Blakely BL, Cohen DM, Genin GM, Chen CS (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7(12):969–71

    Article  PubMed  CAS  Google Scholar 

  82. Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS (2009) Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci USA 106(25):10097–102

    Article  PubMed  CAS  Google Scholar 

  83. LeGrice IJ, Takayama Y, Covell JW (1995) Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77(1):182–93

    PubMed  CAS  Google Scholar 

  84. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–9

    PubMed  Google Scholar 

  85. Levy C, Ter Keurs HE, Yaniv Y, Landesberg A (2005) The sarcomeric control of energy conversion. Ann NY Acad Sci 1047:219–31

    Article  PubMed  CAS  Google Scholar 

  86. Lieber SC, Aubry N, Pain J, Diaz G, Kim SJ, Vatner SF (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol 287(2):H645–51

    Article  PubMed  CAS  Google Scholar 

  87. Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69(1):52–8

    PubMed  CAS  Google Scholar 

  88. MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46(2):257–63

    Article  PubMed  CAS  Google Scholar 

  89. Mahaffy RE, Park S, Gerde E, Käs J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86(3):1777–93

    Article  PubMed  CAS  Google Scholar 

  90. Mansour H, de Tombe PP, Samarel AM, Russell B (2004) Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and focal adhesion kinase. Circ Res 94(5):642–9

    Article  PubMed  CAS  Google Scholar 

  91. Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, Azuma J (2005) N-cadherin-mediated cell adhesion determines the plasticity for cell alignment in response to mechanical stretch in cultured cardiomyocytes. Biochem Biophys Res Commun 326(1):228–32

    PubMed  CAS  Google Scholar 

  92. McCulloch AD (2004) Functionally and structurally integrated computational modeling of ventricular physiology. Jpn J Physiol 54(6):531–9

    Article  PubMed  Google Scholar 

  93. McDonough PM, Glembotski CC (1992) Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem 267(17):11665–8

    PubMed  CAS  Google Scholar 

  94. Menzel A (2005) Modelling of anisotropic growth in biological tissues. A new approach and computational aspects. Biomech Model Mechanobiol 3(3):147–71

    Article  PubMed  CAS  Google Scholar 

  95. Merkel R, Kirchgessner N, Cesa CM, Hoffmann B (2007) Cell force microscopy on elastic layers of finite thickness. Biophys J 93(9):3314–23

    Article  PubMed  CAS  Google Scholar 

  96. Motlagh D, Hartman TJ, Desai TA, Russell B (2003) Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res A 67(1):148–57

    Article  PubMed  CAS  Google Scholar 

  97. Motlagh D, Senyo SE, Desai TA, Russell B (2003) Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24(14):2463–76

    Article  PubMed  CAS  Google Scholar 

  98. Murry CE, Field LJ, Menasché P (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112(20):3174–83

    Article  PubMed  Google Scholar 

  99. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–7

    Article  PubMed  CAS  Google Scholar 

  100. Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61

    PubMed  CAS  Google Scholar 

  101. Nassar RM, Reedy MC, Anderson PAW (1987) Developmental changes in the ultrastructural and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res 61(1):465–483

    PubMed  CAS  Google Scholar 

  102. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–9

    Article  PubMed  CAS  Google Scholar 

  103. Niggli E, Lederer WJ (1991) Restoring forces in cardiac myocytes Insight from relaxations induced by photolysis of caged ATP. Biophys J 59(5):1123–35

    Article  PubMed  CAS  Google Scholar 

  104. Nishimura S, Nagai S, Katoh M, Yamashita H, Saeki Y, Okada J, Hisada T, Nagai R, Sugiura S (2006) Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ Res 98(1):81–7

    PubMed  CAS  Google Scholar 

  105. Norman JJ, Collins JM, Sharma S, Russell B, Desai TA (2008) Microstructures in 3D biological gels affect cell proliferation. Tissue Eng A 14(3):379–90

    Article  CAS  Google Scholar 

  106. Norton JM (2001) Toward consistent definitions for preload and afterload. Adv Physiol Educ 25(1–4):53–61

    PubMed  CAS  Google Scholar 

  107. Palmer RE, Brady AJ, Roos KP (1996) Mechanical measurements from isolated cardiac myocytes using a pipette attachment system. Am J Physiol 270(2 Pt 1):C697–704

    PubMed  CAS  Google Scholar 

  108. Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc Lond B Biol Sci 362(1484):1267–79

    PubMed  CAS  Google Scholar 

  109. Parker KK, Tan J, Chen CS, Tung L (2008) Myofibrillar architecture in engineered cardiac myocytes. Circ Res 103(4):340–2

    Article  PubMed  CAS  Google Scholar 

  110. Patel AA, Thakar RG, Chown M, Ayala P, Desai TA, Kumar S (2010) Biophysical mechanisms of single-cell interactions with microtopographical cues. Biomed Microdevices 12(2):287–96

    Article  PubMed  Google Scholar 

  111. Pinto JG, Win R (1977) Non-uniform strain distribution in papillary muscles. Am J Physiol 233(3):H410–6

    PubMed  CAS  Google Scholar 

  112. Pizzo AM, Kokini K, Vaughn LC, Waisner BZ, Voytik-Harbin SL (2005) Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J Appl Physiol 98(5):1909–21

    Article  PubMed  CAS  Google Scholar 

  113. Poobalarahi F, Baicu CF, Bradshaw AD (2006) Cardiac myofibroblasts differentiated in 3D culture exhibit distinct changes in collagen I production, processing, and matrix deposition. Am J Physiol Heart Circ Physiol 291(6):H2924–32

    Article  PubMed  CAS  Google Scholar 

  114. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–78

    Article  PubMed  CAS  Google Scholar 

  115. Pustoc'h A, Ohayon J, Usson Y, Kamgoue A, Tracqui P (2005) An integrative model of the self-sustained oscillating contractions of cardiac myocytes. Acta Biotheor 53(4):277–93

    Article  PubMed  Google Scholar 

  116. Qin L, Huang J, Xiong C, Zhang Y, Fang J (2007) Dynamical stress characterization and energy evaluation of single cardiac myocyte actuating on flexible substrate. Biochem Biophys Res Commun 360(2):352–6

    Article  PubMed  CAS  Google Scholar 

  117. Rall JA (1982) Sense and nonsense about the Fenn effect. Am J Physiol 242(1):H1–6

    PubMed  CAS  Google Scholar 

  118. Roeder BA, Kokini K, Robinson JP, Voytik-Harbin SL (2004) Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J Biomech Eng 126(6):699–708

    Article  PubMed  Google Scholar 

  119. Russell B, Curtis MW, Koshman YE, Samarel AM (2010) Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol 48(5):817–23

    Article  PubMed  CAS  Google Scholar 

  120. Russell B, Motlagh D, Ashley WW (2000) Form follows function: how muscle shape is regulated by work. J Appl Physiol 88(3):1127–32

    PubMed  CAS  Google Scholar 

  121. Sadoshima J, Izumo S (1993) Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. J Recept Res 13(1–4):777–94

    PubMed  CAS  Google Scholar 

  122. Salameh A, Wustmann A, Karl S, Blanke K, Apel D, Rojas-Gomez D, Franke H, Mohr FW, Janousek J, Dhein S (2010) Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ Res 106(10):1592–602

    Article  PubMed  CAS  Google Scholar 

  123. Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289(6):H2291–301

    Article  PubMed  CAS  Google Scholar 

  124. Samuel JL, Vandenburgh HH (1990) Mechanically induced orientation of adult rat cardiac myocytes in vitro. In Vitro Cell Dev Biol 26(9):905–14

    Article  PubMed  CAS  Google Scholar 

  125. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–35

    Article  PubMed  CAS  Google Scholar 

  126. Senyo SE, Koshman YE, Russell B (2007) Stimulus interval, rate and direction differentially regulate phosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett 581(22):4241–7

    Article  PubMed  CAS  Google Scholar 

  127. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47(6):1175–81

    Article  PubMed  Google Scholar 

  128. Sharp WW, Terracio L, Borg TK, Samarel AM (1993) Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Circ Res 73(1):172–83

    PubMed  CAS  Google Scholar 

  129. Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L (1997) Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. J Physiol 273(2 Pt 2):H546–56

    CAS  Google Scholar 

  130. Simpson DG, Majeski M, Borg TK, Terracio L (1999) Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res 85(10):e59–69

    PubMed  CAS  Google Scholar 

  131. Sollott SJ, Lakatta EG (1994) Novel method to alter length and load in isolated mammalian cardiac myocytes. Am J Physiol 267(4 Pt 2):H1619–29

    PubMed  CAS  Google Scholar 

  132. Spurgeon HA, Stern MD, Baartz G, Raffaeli S, Hansford RG, Talo A, Lakatta EG, Capogrossi MC (1990) Simultaneous measurement of Ca++, contraction, and potential in cardiac myocytes. Am J Physiol 258(1):H574–H586

    PubMed  CAS  Google Scholar 

  133. Steadman BW, Moore KB, Spitzer KW, Bridge JHB (1988) A video system for measuring motion in contracting heart cells. IEEE Trans Biomed Eng 35(1):264–272

    Article  PubMed  CAS  Google Scholar 

  134. Street SF (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114(3):346–64

    Article  PubMed  CAS  Google Scholar 

  135. Su J, Jiang X, Welsch R, Whitesides GM, So PT (2007) Geometric confinement influences cellular mechanical properties I—adhesion area dependence. Mol Cell Biomech 4(2):87–104

    PubMed  Google Scholar 

  136. Sugiura S, Nishimura S, Yasuda S, Hosoya Y, Katoh K (2006) Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes. Nat Protoc 1(3):1453–7

    Article  PubMed  CAS  Google Scholar 

  137. Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90(4):1295–307

    Article  PubMed  CAS  Google Scholar 

  138. Takakuda K, Miyairi H (1996) Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials 17(14):1393–7

    Article  PubMed  CAS  Google Scholar 

  139. Tamariz E, Grinnell F (2002) Modulation of fibroblast morphology and adhesion during collagen matrix remodeling. Mol Biol Cell 13(11):3915–29

    Article  PubMed  CAS  Google Scholar 

  140. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–9

    Article  PubMed  CAS  Google Scholar 

  141. Terracio L, Miller B, Borg TK (1988) Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 24(1):53–8

    Article  PubMed  CAS  Google Scholar 

  142. Thakar RG, Chown MG, Patel A, Peng L, Kumar S, Desai TA (2008) Contractility-dependent modulation of cell proliferation and adhesion by microscale topographical cues. Small 4(9):1416–24

    Article  PubMed  CAS  Google Scholar 

  143. Thoumine O, Ott A (1997) Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J Cell Sci 110(Pt 17):2109–16

    PubMed  CAS  Google Scholar 

  144. Torsoni AS, Constancio SS, Nadruz W Jr, Hanks SK, Franchini KG (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93(2):140–7

    Article  PubMed  CAS  Google Scholar 

  145. Tracqui P, Ohayon J, Boudou T (2008) Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness. J Theor Biol 255(1):92–105

    Article  PubMed  CAS  Google Scholar 

  146. Varner VD, Voronov DA, Taber LA (2010) Mechanics of head fold formation: investigating tissue-level forces during early development. Development 137(22):3801–11

    Article  PubMed  Google Scholar 

  147. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–7

    Article  PubMed  CAS  Google Scholar 

  148. Wang JH, Lin JS (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–71

    Article  PubMed  Google Scholar 

  149. Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–16

    PubMed  CAS  Google Scholar 

  150. Wei Z, Deshpande VS, McMeeking RM, Evans AG (2008) Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng 130(3):031009

    Article  PubMed  Google Scholar 

  151. Wen H, Bennett E, Epstein N, Plehn J (2005) Magnetic resonance imaging assessment of myocardial elastic modulus and viscosity using displacement imaging and phase-contrast velocity mapping. Magn Reson Med 54(3):538–48

    Article  PubMed  Google Scholar 

  152. White E, Boyett MR, Orchard CH (1995) The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol 482(Pt 1):93–107

    PubMed  CAS  Google Scholar 

  153. Witt SH, Labeit D, Granzier H, Labeit S, Witt CC (2005) Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J Muscle Res Cell Motil 26(6–8):401–8

    PubMed  CAS  Google Scholar 

  154. Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43

    Article  PubMed  CAS  Google Scholar 

  155. Yamada K, Green KG, Samarel AM, Saffitz JE (2005) Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circ Res 97(4):346–53

    Article  PubMed  CAS  Google Scholar 

  156. Yamane M, Matsuda T, Ito T, Fujio Y, Takahashi K, Azuma J (2007) Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress. Biochem Biophys Res Commun 353(4):1023–7

    Article  PubMed  CAS  Google Scholar 

  157. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K (1995) Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96(1):438–46

    Article  PubMed  CAS  Google Scholar 

  158. Yu JG, Russell B (2005) Cardiomyocyte remodeling and sarcomere addition after uniaxial static strain in vitro. J Histochem Cytochem 53(7):839–44

    Article  PubMed  CAS  Google Scholar 

  159. Zemel A, Safran SA (2007) Active self-polarization of contractile cells in asymmetrically shaped domains. Phys Rev E Stat Nonlin Soft Matter Phys 76(2 Pt 1):021905

    Article  PubMed  CAS  Google Scholar 

  160. Zhao Y, Lim CC, Sawyer DB, Liao R, Zhang X (2007) Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures. Cell Motil Cytoskeleton 64(9):718–25

    Article  PubMed  Google Scholar 

  161. Zhu J, Sabharwal T, Kalyanasundaram A, Guo L, Wang G (2009) Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation. J Biomech 42(13):2143–50

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Russell.

Additional information

This article is published as part of the special issue on “The cytoskeleton and the cellular transduction of mechanical strain.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, M.W., Russell, B. Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling. Pflugers Arch - Eur J Physiol 462, 105–117 (2011). https://doi.org/10.1007/s00424-011-0931-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0931-8

Keywords

Navigation