Skip to main content

Advertisement

Log in

Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm

  • Published:
JOM Aims and scope Submit manuscript

Abstract

An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.R. Odette, JOM 66, 2427 (2014).

    Article  Google Scholar 

  2. PRIS database, Reactor status report, http://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx (2014).

  3. B. Morkos, J. Mathieson, and J.D. Summers, Res. Eng. Design 25, 139 (2014).

    Article  Google Scholar 

  4. A. Rodríguez, A.M. Camacho, and M.A. Sebastián, Procedia Eng. 100, 1301–1308 (2015).

    Article  Google Scholar 

  5. International Atomic Energy Agency (IAEA) TECDOC—1442, Guidelines for prediction of irradiation embrittlement of operating WWER440 reactor pressure vessels (IAEA Publications, Vienna, 2005).

  6. Electrabel GDF Suez, Safety case report: Doel 3 Reactor Pressure Vessel Assessment (Electrabel Publications, Brussels, 2012).

    Google Scholar 

  7. A. Rodríguez-Prieto, A.M. Camacho, and M.A. Sebastián, 17th International Congress on Project Management and Engineering (AEIPRO, Logroño, 2013), pp. 1324–1336.

    Google Scholar 

  8. Federal Agency for Nuclear Control (FANC), Flaw indications in the reactor pressure vessel of Doel 3 (FANC, Brussels, 2012).

  9. Flawed Tweer, Reactor pressure vessels in Belgian nuclear plants Doel-3 and Tihange—2. Some comments on the FANC provisional evaluation report (EFA Group in the European Parliament Publications, Brussels, 2013).

    Google Scholar 

  10. T. Hardin (ed), Materials reliability program: evaluation of the reactor vessel beltline shell forgings of operating U.S. PWRs for quasi-laminar indications (MRP-367) (EPRI Publications, Palo Alto, 2013).

  11. P. Crépey, M. Pivette, and A. Bar-Hen, PLoS One 8, e58385 (2013).

    Article  Google Scholar 

  12. S. Sierla, B.M. O’Halloran, T. Karhela, N. Papakonstantinou, and I.Y. Tumer, Res. Eng. Design 24, 375–379 (2014).

    Article  Google Scholar 

  13. D.A. Lados, JOM 61, 67 (2009).

    Article  Google Scholar 

  14. J. Lin, Y. Yuan, and M. Zhang, PLoS One 9, e93042 (2014).

    Article  Google Scholar 

  15. J. Lin, Y. Yuan, J. Zhou, and J. Gao, PLoS One 9, e103937 (2014).

    Article  Google Scholar 

  16. T.M. Osman, JOM 60, 10 (2008).

    Article  MathSciNet  Google Scholar 

  17. R. Shukla, H. Nagesh, H. Kulkarni, B.P. Gautham, A.K. Singhm, F. Mistree, J.K. Allen, and J.H. Panchal, JOM 67, 95 (2015).

    Article  Google Scholar 

  18. D.J. Naus, JOM 61, 35 (2009).

    Article  Google Scholar 

  19. G.R. Odette and R.K. Nanstad, JOM 61, 17 (2009).

    Article  Google Scholar 

  20. G.R. Odette and G.E. Lucas, GE, Embrittlement of nuclear reactor pressure vessels. JOM 53, 18 (2001).

    Article  Google Scholar 

  21. C. English and J. Hyde, Comprenhensive Nuclear Materials, ed. R.J. Konings (Elsevier, New York, 2012), pp. 151–180.

    Chapter  Google Scholar 

  22. M. Serrano and M. Hernández, Anales de mecánica y electricidad 5, 42–47 (2008).

    Google Scholar 

  23. A. Ballesteros, R. Ahlstrand, C. Bruynooghe, A. Chernobaeva, Y. Kevorkyan, D. Erakb, and D. Zurkob, Prog. Nucl. Energ. 53, 756 (2011).

    Article  Google Scholar 

  24. N. Soneda, K. Dohi, K. Nishida, A. Nomoto, M. Iwasaki M, S. Tsuno, T. Akiyama, S. Watanabe, and T. Ohta, in P. Pradel (ed) Proceedings of the International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs (SFEN, Avignon, 2011), A080, pp. 1–9.

  25. M. Kirk, Nucl. Eng. Technol. 45, 277 (2013).

    Article  MathSciNet  Google Scholar 

  26. M.L. Jenkins, M.A. Kirk, and W.J. Pythian, J. Nucl. Mater. 205, 16 (1993).

    Article  Google Scholar 

  27. A. Ballesteros, M. Colomer, U. von Estorff, and L. Debarberis, 38th Annual Meeting Spanish Nuclear Society (SNE, Cáceres, 2012).

    Google Scholar 

  28. K. Fujii, K. Fukuya, R. Kasada, and A. Kimura, J. Nucl. Mater. 407, 151–156 (2010).

    Article  Google Scholar 

  29. Y. Nagay, Z. Tang, M. Hassegawa, T. Kanai, and M. Saneyasu, Phys. Rev. B Condens. Matter 63, 1–5 (2011).

    Google Scholar 

  30. T.R. Mager, in L.E. Steele (ed) Radiation embrittlement of nuclear reactor pressure vessels steels: an international review, ASTM STP 1170 (ASTM, Philadelphia, 1993), pp. 87–98.

  31. L.F. Porter, Materials in Nuclear Applications, ASTM STP 276 (Philadelphia: ASTM, 1981), pp. 147–160.

    Google Scholar 

  32. M. Kangilaski, The effects of neutron irradiation on structural materials (Columbus: Battelle Memorial Institute Publications, 1967).

    Book  Google Scholar 

  33. D. Pachur, in D. Kramer, H.R. Brager and J.S. Perrin (eds) Effects of radiation on materials, ASTM STP 725 (ASTM, Philadelphia, 1981), pp. 5–19.

  34. International Atomic Energy Agency (IAEA) TECDOC-1230, in Reference manual on the IAEA JRQ correlation monitor steel for irradiation damage studies (IAEA Publications, Vienna, 2001).

  35. KTA Safety Standard 3201.2, in Components of the reactor coolant pressure boundary of light water reactorsPart 3: design and analysis (Nuclear Safety Standards Commission (KTA) Publications, Salzgitter, 2011).

  36. KTA Safety Standard 3203, in Surveillance of the irradiation behaviour of reactor pressure vessel materials of LWR facilities (Nuclear Safety Standards Commission (KTA) Publications, Salzgitter, 2001).

  37. G.R. Odette, G. Lucas, and R. Klingensmith, in D.S. Gelles, R.K. Nanstad, A.S. Kumar, and E.A. Little, 17th International Symposium on effects of radiation on materials, ASTM STP 1270 (ASTM, Sun Valley 1996), pp. 606–622.

  38. A.D. Amayev, A.M. Kryukov, and M.A. Sokolov, in L.E. Steele (ed) Radiation embrittlement of nuclear reactor pressure vessels steels: an international review, ASTM STP 1170 (ASTM, Philadelphia, 1993), p. 374.

  39. U.S. Nuclear Regulatory Commission, in Development of Flaw Size Distribution Tables for Draft Proposed Title 10 of the Code of Federal Regulations (10 CFR) 50.61a (Nuclear Regulatory commission, Washington D.C, 2007).

  40. W. Barr, The fracture of Metals (London: Institution of Metallurgists, 1950).

    Google Scholar 

  41. K.J. Irvine, Proceedings of the joint conference organized by the British Iron and Steel Research Association and the Iron and Steel Institute (Iron and Steel Institute, North Yorkshire, 1967), pp. 11–22.

  42. F.B. Pickering and T. Gladman, Metallurgical developments in carbon steels-special report (London: Iron and Steel Institute, 1963).

    Google Scholar 

  43. CSN, Nuclear physics and technology (in Spanish: Física y tecnología nucleares) (Publications of Spanish nuclear-Regulatory Council, Madrid, 2014)

  44. J.R. Hawthorne, Nucl. Technol. 59, 440–455 (1982).

    Google Scholar 

  45. E.P. De Garmo, J.T. Black, and R.A. Kohser, Materials and Processes in Manufacturing (Hoboken: Wiley, 2012).

    Google Scholar 

  46. R.L. Bernau, Elements of metalography and carbon steels (in Spanish: Elementos de metalografía y acero al carbono) (Andrés Bello: Santiago de Chile, 1958).

    Google Scholar 

  47. I.M. Young, J. Nucl. Mater. 297, 38–148 (2001).

    Google Scholar 

  48. P. Petrequin, P. Soulat, and B. Houssin, Proceedings of the Irradiation embrittelment Thermal annealing and surveillance of reactor pressure vessels (IAEA Publications, Vienna, 1979), pp. 195–200.

  49. R. Stofanak, T. Poskie, Y. Li, and G. Wire, 6th International Symposium on environmental degradation of materials in nuclear power systemsWater Reactors, in R.E Gold (ed), EP Simonen (TMS, San Diego, 1993), pp. 757–763.

  50. A. Nikolaeva, Y. Nikolaev, and A. Krjoikov, J. Nucl. Mater. 218, 85–93 (1994).

    Google Scholar 

  51. G.E.P. Box and N.R. Draper, Empirical model-building and response surfaces (London: Wiley, 1987).

    MATH  Google Scholar 

  52. T.B. Savoie and D.D. Frey, Res. Eng. Design 23, 156 (2012).

    Article  Google Scholar 

  53. A. Rodríguez-Prieto (Ph.D. dissertation, ETSII Universidad Nacional de Educación a Distancia, 2014).

  54. J. Landeta, Delphi method (Barcelona: Ariel, 2002).

    Google Scholar 

  55. N.C. Dalkey and O. Helmer, Manag. Sci. 9, 458–467 (1963).

    Article  Google Scholar 

  56. H.A. Linstone and T. Murray T (eds.), The Delphi Method. Techniques and Applications (NJIT Publications, New Jersey, 2002).

  57. M.G. Tolsgaard, T. Todsen, J.L. Sorensen, C. Ringsted, T. Lorentzen, B. Ottesen, and A. Tabor, PLoS ONE 8, e57687 (2013).

    Article  Google Scholar 

  58. SA-508/SA-508M, Specification for quenched and tempered vacuumtreated carbon and alloy steel forgings for pressure vessels, ASME B&PV II Section A (American Society of Mechanical Engineers Publications, New York, 2010).

  59. SA-533/SA-533M, Specification for pressure vessels plates, alloy steel, quenched and tempered manganeseMolybdenum and ManganeseMolybdenumNicke, ASME B&PV II Section A (New York: American Society of Mechanical Engineers publications, 2010).

  60. KTA Safety Standard 3201.1, Components of the Reactor Coolant Pressure Boundary of Light Water Reactors. Part 1: Materials and Product Forms (Nuclear Safety Standards Commission (KTA) Publications, Salzgitter, 1998).

  61. RCC—MR, Design and construction rules for mechanical components of nuclear installations applicable for high temperature structures and ITER vacuum vessel (AFCEN Publications, Paris, 2007).

Download references

Acknowledgements

This work has been financially supported by the funds provided through the Annual Grant Call of the E.T.S.I.I. of UNED of reference 2014-ICF04.

We would like to acknowledge the panel of experts, specifically A. Sanjuán and F. Izquierdo (Trillo NPP), C. Oria and J.M. Figueras (National Nuclear Safety Council—CSN), F. Carrasco (Almaraz NPP), J. Abad and A. Bernardo (Trillo NPP-SGS), J. González, F. Palacios and R. Alcántara (Trillo NPP-Applus), F. del Pozo and S. de Abril (EEAA engineering), J. Jordán, J. Sánchez and S. Muñoz (SGS Tecnos), A.M. Aragón and Dra. Marta Multigner (UCM), Dra. I. Martín (CENIM-National Metallurgical Research Center), Dr. D. Rodríguez (CNEA), E.J. Harkness (First Energy-USA, Perry NPP), Dr. J. Jerz (Institute of Materials & Machine Mechanics, Slovak Academy of Sciences), Dr. J. García (Enusa), Dr. P. Angelo (U.S. Oak Ridge National Laboratory), Dr. G. LoMonaco (Genoa University) and Dr. G. Lucas (University of California Santa Barbara).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Rodríguez-Prieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Prieto, Á., Camacho, A.M. & Sebastián, M.Á. Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm. JOM 68, 496–506 (2016). https://doi.org/10.1007/s11837-015-1687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1687-y

Keywords

Navigation