Skip to main content
Log in

Multicriteria materials selection for extreme operating conditions based on a multiobjective analysis of irradiation embrittlement and hot cracking prediction models

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A methodology for evaluating different combinations of materials specifications for extreme environment applications is presented. This new approach addresses the materials selection problem using a multicriteria stringency level methodology that defines several thresholds obtained by analyzing different prediction models of irradiation embrittlement and hot cracking. To solve the conflicts among thresholds as provided by the different prediction models, a multiobjective approach is carried out. Materials for reactor pressure vessels have been considered as case study. It has been concluded that the best option to manufacture a pressure vessel for a pressurized water modern reactor is the selection of German manufacturing standards. Finally, a sensitivity analysis of the proposed methodology has been performed to evaluate the divergences between the single stringency level methodology and the new proposal including multicriteria decision making aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A ij :

Requirement i specified by the materials specification j

A + :

Ideal solution

A :

Anti-ideal solution

CF:

Chemical factor (R.G. 1.99 Rev.2 prediction model)

C +j :

Relative closeness of each material requirement Rij to the ideal solution A +

d +i :

Separation between the requirement i specified by the materials specification j (Aij) and the ideal solution according to the constraints

d i :

Separation between the requirement i specified by the materials specification j (A ij ) and the anti-ideal solution according to the constraints

L i :

Distance between the solution provided by the upper bounds and the medium point or requirements range as established by multiobjective approach

L s :

Standardized limit (method of stringency levels)

RCC-MR:

French code

r ij :

Normalized stringency level

r j :

Mean value of r ij for the materials specification j

SI i :

Sensitivity index of the output

S + j :

The minimum Euclidean distance of any requirement of the materials specification j from the ideal solution

S j :

The maximum Euclidean distance of any requirement of the materials specification j from the anti-ideal solution

SL ( Max) :

Maximum value of stringency level according to the defined scale

T r :

Threshold

Y p :

Yield point

σ t , σ l :

Membrane theory stresses (transversal and longitudinal components)

P:

Pressure (in-service)

R, t:

Radius, thickness of vessel

Φ :

Neutron flux (n/cm2)

RT DBT :

Shift of ductile-to-brittle transition temperature

ASME B&PV:

American Society of Mechanical Engineers Boiler & Pressure Vessels

DBT:

Ductile–Brittle Transition

DV:

Decision variable

erf:

Error function

IASCC:

Irradiation-Assisted Stress Corrosion Cracking

KTA:

Kern Technischer Ausschuss (German safety council)

MCDM:

Multicriteria decision making

OF:

Objective function

PWR:

Pressure water reactor

R.G.:

Regulatory guide (United States Nuclear Regulatory Commission)

SL :

Stringency level

References

  • Amayev, A.D., Kryukov, A.M., Sokov, M.A.: Recovery of the transition temperature of irradiated WWER-440 Vessel Metal by Annealing. In: Steele, L.E. (ed.) Radiation Embrittlement of Nuclear Pressure Vessel Steels: An International Review, vol. 4, pp. 369–379. ASTM STP 1170 (1993)

  • American Society for Metals—ASM: Source book on stainless steels. Engineering Bockshelfs, Russell Township, USA (2012)

  • Arantes, F.M.L., Trevisan, R.E.: Experimental and theoretical evaluation of solidification cracking in weld metal. J. Achiev. Mater. Manuf. Eng. 20(1–2), 407–410 (2007)

    Google Scholar 

  • ASME B&PV: Boiler and Pressure Vessels Code. American Society of Mechanical Engineers, New York (2015)

    Google Scholar 

  • ASME B&PV II D App. 1 Mandatory, 2015: Basis for Establishing Stress Values. American Society of Mechanical Engineers, New York (2015)

  • ASTM E900: Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials. American Society for Testing and Materials, Philadephia (2002)

    Google Scholar 

  • Ballesteros, A., Acosta, B.: Embrittlement Trend Curve for Vessel Steels with Low Copper Content. International Atomic Energy Agency, Vienna (1997)

    Google Scholar 

  • Blagoeva, D.T., Debarberis, L., Jong, M., ten Pierick, P.: Stability of ferritic steel to higher doses: survey of reactor pressure vessel steel data and comparison with candidate materials for future nuclear systems. Int. J. Press. Vessel. Pip. 122, 1–5 (2014)

    Article  Google Scholar 

  • Bringas, J.E. (ed.): Handbook of Comparative World Steel Standards. American Society for Testing and Materials, Philadelphia (2000)

    Google Scholar 

  • Brooks, A., Thompson, W.: Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds. Int. Mater. Rev. 36, 16–44 (1991)

    Article  Google Scholar 

  • Chauhan, A., Vaish, R., Bowen, C.: Piezoelectric material selection for ultrasonic transducer and actuator applications. Proc. IMechE Part L J. Mater. Des. Appl. 229(1), 3–12 (2015)

    Article  Google Scholar 

  • Chung, H.M., Perry, D.L., Shack, W.J.: Sulphur in Austenitic Stainless Steel and Irradiation Assisted Stress Corrosion Cracking. NACE International, Houston (2003)

    Google Scholar 

  • Eason, E.D., Wright, J.E., Odette, G.R.: Improved Embrittlement Correlations for Reactor Pressure Vessel Steels. NUREG/CR-6551. U.S. Nuclear Regulatory Commission, Washington (1998)

    Google Scholar 

  • Fujii, K., Fukuya, K., Kasada, R., Kimura, A., Ohkubo, T.: Effects of stress on radiation hardening and microstructural evolution in A533B steel. J. Nucl. Mater. 407(3), 151–156 (2010)

    Article  Google Scholar 

  • Gillemot, F.: Overview of reactor pressure vessel cladding. Int. J. Nucl. Knowl. Manag. 4(4), 265–278 (2010)

    Article  Google Scholar 

  • Hyde, T., Sun, W.: Some issues on creep damage modelling of welds with heterogeneous structures. Int. J. Mech. Mater. Des. 5, 327–335 (2009)

    Article  Google Scholar 

  • IAEA: Earthquake Preparedness and Response for Nuclear Power Plants. International Atomic Energy Agency Publications, Vienna (2011)

    Google Scholar 

  • Jenkins, M.L., Kirk, M.A., Pythian, W.J.: Experimental studies of cascade phenomena in metals. J. Nucl. Mater. 205, 16–30 (1993)

    Article  Google Scholar 

  • Jiang, C., Huang, X.P., Wei, X.P., Liu, N.Y.: A time-variant reliability analysis method for structural systems based on stochastic process discretization. Int. J. Mech. Mater. Des. 13, 173–193 (2017)

    Article  Google Scholar 

  • Kemp, R., Cottrell, G.A., Bhadeshia, H.K.D.H., Odette, G.R., Yamamoto, T., Kishimoto, H.: Neural-network analysis of irradiation hardening in low-activation steels. J. Nucl. Mater. 348(3), 311–328 (2006)

    Article  Google Scholar 

  • Kim, M.C., Park, S.G., Lee, K.H., Lee, B.S.: Comparison of fracture properties in SA508 Gr. 3 and Gr. 4N high strength low alloy steels for advanced pressure vessel materials. Int. J. Press. Vessel. Pip. 131, 60–66 (2015)

    Article  Google Scholar 

  • Kirk, M.: Development of the alternate pressurized thermal shock rule (10 CFR 50.61a) in the United States. Nucl. Eng. Technol. 45(3), 277–294 (2013)

    Article  Google Scholar 

  • Kobayashi, S., Yamamoto, T., Klingensmith, D., Odette, G.R., Kikuchi, H., Kamada, Y.: Magnetic evaluation of irradiation hardening in A533B reactor pressure vessel steels: magnetic hysteresis measurements and the model analysis. J. Nucl. Mater. 422(1–3), 158–162 (2012)

    Article  Google Scholar 

  • Kotecki, D., Sievert, T.A.: WRC-1992 Constitution diagram for stainless steel weld metal: a modification of the WRC-1988 diagram. Weld. J. 71, 171–178 (1992)

    Google Scholar 

  • KTA Safety Standard 3201.1: Components of the Reactor Coolant Pressure Boundary of Light Water Reactors. Part 1: Materials and Product Forms. Nuclear Safety Standards Commission (KTA), Salzgitter (1998)

    Google Scholar 

  • KTA Safety Standard 3201.3: Components of the Reactor Coolant Pressure Boundary of Light Water Reactors—Part 3: Manufacture. Nuclear Safety Standards Commission (KTA), Salzgitter (2007)

    Google Scholar 

  • KTA Safety Standard 3203: Surveillance of the Irradiation Behaviour of Reactor Pressure Vessel Materials of LWR Facilities. Nuclear Safety Standards Commission (KTA), Salzgitter (2001)

    Google Scholar 

  • KTA Safety Standard 3201.2: Components of the reactor coolant pressure boundary of light water reactors—Part 3: design and analysis. Nuclear Safety Standards Commission (KTA), Salzgitter (2011)

    Google Scholar 

  • Kwon, J., Kwon, S.C., Hong, J.-H.: Prediction of radiation hardening in reactor pressure vessel steel based on a theoretical model. Ann. Nucl. Energy 30(15), 1549–1559 (2003)

    Article  Google Scholar 

  • Leite, M., Silva, A., Henriques, E., Madeira, J.F.A.: Materials selection for a set of multiple parts considering manufacturing costs and weight reduction with structural isoperformance using direct multisearch optimization. Struct. Multidiscip. Optim. 52, 635–644 (2015)

    Article  MathSciNet  Google Scholar 

  • Miannay, D., Dussarté, D., Soulat, P.: The nil-ductility temperature shift arising from irradiation as predicted through the French test reactors experiments. Effects of radiation on materials. ASTM STP 1046, 284–304 (1990)

    Google Scholar 

  • Milani, A.S., Shanian, A.: Gear material selection with uncertain and incomplete data. Material performance indices and decision aid model. Int. J. Mech. Mater. Des. 3, 209–222 (2006)

    Article  Google Scholar 

  • Moorhead, A.J., Sikka, V.K., Reed, R.W.: Effect of small additions of niobium on the welding behaviour of an austenitic stainless steel, properties of austenitic stainless steels and their weld metals (influence of slaight chemistry variations). ASTM Spec. Tech. Publ. 679, 103–111 (1979)

    Google Scholar 

  • Moss, D., Basic, M.: Pressure vessel design manual. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  • Odette, G.R., Lucas, G.E.: Irradiation embrittlement of reactor pressure vessel steels:mechanism, models, and data correlations. Radiation embrittlement of nuclear pressure vessels steels: an international review. ASTM STP 909, 206–241 (1986)

    Google Scholar 

  • RCC-MR: Design and Construction Rules for Mechanical Components of Nuclear Installations Applicable for High Temperature Structures and ITER Vacuum Vessel. AFCEN publications, Paris (2007)

    Google Scholar 

  • Regulatory Guide R.G 1.99 Rev.1: Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessels Materials. Nuclear Regulatory Commission (NRC), Washington (1977)

    Google Scholar 

  • Regulatory Guide R.G 1.99 Rev.2: Radiation Embrittlement of Reactor Vessel Materials. Nuclear Regulatory Commission, Washington (1988)

    Google Scholar 

  • Riou, B., Escaravage, C., Hittner, D., Pierron, D.: Issues in reactor pressure vessel materials. In: Proceedings of the 2nd International Topical Meeting on High Temperature Reactor Technology, pp. 10–22. Beijing (China), 22–24 Sept (2004)

  • Rodríguez, A., Camacho, A.M., Sebastián, M.A.: Prediction of the mechanical behaviour of cladding materials for nuclear reactor pressure-vessels based on the analysis of technological requirements. Proc. Eng. 100, 1301–1308 (2015)

    Article  Google Scholar 

  • Rodríguez-Prieto, A., Camacho, A.M., Sebastián, M.A.: Materials selection criteria for nuclear power applications: a decision algorithm. JOM 68(2), 496–506 (2016)

    Article  Google Scholar 

  • Rodríguez-Prieto, A., Camacho, A.M., Sebastián, M.A.: Selection of candidate materials for reactor pressure vessels: application of irradiation embrittlement prediction models and a stringency level methodology. Proc. IMechE Part L J. Mater. Des. Appl. (2017a). https://doi.org/10.1177/1464420717727769

    Article  Google Scholar 

  • Rodríguez-Prieto, A., Camacho, A.M., Sebastián, M.A.: Evaluation method for pressure vessel manufacturing codes: the influence of ASME unit conversion. Int. J. Mater. Prod. Technol. 54(4), 259–274 (2017b)

    Article  Google Scholar 

  • Rodríguez-Prieto, A., Camacho, A.M., Sebastián, M.A.: Quantitative analysis of prediction models of hot cracking in stainless steels using standardized requirements. Sadh. Acad. Proc. Eng. Sci. (2017c). https://doi.org/10.1007/s12046-017-0745-2

    Article  Google Scholar 

  • Sharifian, M.: Nonlinear elastoplastic analysis of pressure sensitive materials. Int. J. Mech. Mater. Des. (2017). https://doi.org/10.1007/s10999-017-9377-2

    Article  Google Scholar 

  • Soneda, N., Dohi, K., Nishida, K., Nomoto, A., Iwasaki, M., Tsuno, S., Akiyama, T., Watanabe, S., Ohta, T.: Flux effect on neutron irradiation embrittlement of Reactor Pressure Vessel steels irradiated to high fluences. In: Proceedings of the International Symposium on Contribution of Materials Investigations to Improve the Safety and Performance of LWRs, pp. 1–9. Avignon (France), 26–30 Sept (2011)

  • Timofeev, B.: Assessment of the first generation RPV state after designed lifetime. Int. J. Press. Vessel. Pip. 81(8), 703–712 (2004)

    Article  Google Scholar 

  • Valiente, M.A.: Predictive and measurement methods for delta ferrite determination in stainless steels. Weld. J. 91(4), 113–121 (2012)

    Google Scholar 

  • Vijayaraghavan, V., Garg, A., Wong, C.H., Tai, K., Singru, P.M.: An integrated computational approach for determining the elastic properties of boron nitride nanotubes. Int. J. Mech. Mater. Des. 11, 1–14 (2015)

    Article  Google Scholar 

  • Welding Handbook: Materials and Applications Part 2, vol. 4, Nine edn. American welding society (AWS) publications, Miami (2014)

    Google Scholar 

  • Wu, S.J., Cao, L.W.: Effect of intergranular failure on the critical fracture stress and the fracture toughness of degraded reactor pressure vessel steel. Int. J. Press. Vessel. Pip. 101, 23–29 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez-Prieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Prieto, A., Camacho, A.M. & Sebastián, M.A. Multicriteria materials selection for extreme operating conditions based on a multiobjective analysis of irradiation embrittlement and hot cracking prediction models. Int J Mech Mater Des 14, 617–634 (2018). https://doi.org/10.1007/s10999-017-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9393-2

Keywords

Navigation