Skip to main content
Log in

Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2

  • Published:
JOM Aims and scope Submit manuscript

Abstract

There is considerable interest in increasing the working temperature of both open and closed supercritical CO2 (sCO2) cycles to ≥700°C. At these temperatures, it is unlikely that Fe-base alloys have suitable strength and therefore the focus is on Ni-base alloys for this application. To begin addressing the lack of sCO2 materials compatibility data under these conditions, initial work exposed a wide range of candidate alloys for 500 h at 20 MPa (200 bar) CO2 at 650–750°C in high-purity CO2. In general, the reaction products were thin and protective in these exposures. A smaller group of alloy coupons focusing on chromia- and alumina-forming alloys was exposed for 500 h in 0.1 MPa (1 bar) air, CO2, CO2 + O2 and CO2 + H2O for comparison. The thin surface oxides formed were very similar to those formed at high pressure and no clear detrimental effect of CO2 oxidation or O2 or H2O impurities could be observed in these exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Dostal, P. Hejzlar, and M.J. Driscoll, Nucl. Technol. 154, 283 (2006).

    Article  Google Scholar 

  2. X.R. Zhang, H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, and N. Sawada, Non Renew. Energy 31, 1839 (2006).

    Article  Google Scholar 

  3. H. Chen, D.Y. Goswami, and E.K. Stefanakos, Renew. Sustain. Energy Rev. 14, 3059 (2010).

    Article  Google Scholar 

  4. B.D. Iverson, T.M. Conboy, J.J. Pasch, and A.M. Kruizenga, Appl. Energy 111, 957 (2013).

    Article  Google Scholar 

  5. R.J. Allam, M.R. Palmer, G.W. Brown Jr, J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, and C. Jones Jr, Energy Proced. 37, 1135 (2013).

    Article  Google Scholar 

  6. I.G. Wright, B.A. Pint, J.P. Shingledecker, and D. Thimsen, in ASME Paper #GT2013-94941, Presented at the International Gas Turbine & Aeroengine Congress & Exhibition (San Antonio, TX, 2013).

  7. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, J. Mater. Eng. Perform. 14, 281 (2005).

    Article  Google Scholar 

  8. R. Viswanathan, J. Shingledecker, and R. Purgert, Power 154, 41 (2010).

    Google Scholar 

  9. H.E. McCoy, Corrosion 21, 84 (1965).

    Article  Google Scholar 

  10. F. Rouillard, F. Charton, and G. Moine, Corrosion 67, 095001 (2011).

    Article  Google Scholar 

  11. C.H. Oh, T. Lillo, W. Windes, T. Totemeier, B. Ward, R. Moore, and R. Barner, in Idaho National Laboratory Report INL/EXT-06-01271, 2006.

  12. M.W. Dunlevy, M.Sc. Thesis, MIT, Cambridge, 2009.

  13. L. Tan, M. Anderson, D. Taylor, and T.R. Allen, Corros. Sci. 53, 3273 (2011).

    Article  Google Scholar 

  14. R. Moore and T. Conboy, in Sandia National Laboratory Report SAND2012-0184, 2012.

  15. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, and T.R. Allen, Corros. Sci. 69, 281 (2013).

    Article  Google Scholar 

  16. L.F. He, P. Roman, B. Leng, K. Sridharan, M. Anderson, and T.R. Allen, Corros. Sci. 82, 67 (2014).

    Article  Google Scholar 

  17. D.J. Young, J. Zhang, C. Geers, and M. Schütze, Mater. Corros. 62, 7 (2011).

    Article  Google Scholar 

  18. B. Jönsson and C. Svedberg, Mater. Sci. Forum 251–254, 551 (1997).

    Article  Google Scholar 

  19. L.M. Pike, Superalloys, ed. R.C. Reed, et al. (Warrendale: TMS, 2008), p. 191.

    Google Scholar 

  20. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Article  Google Scholar 

  21. J. Pirón Abellán, T. Olszewski, G.H. Meier, L. Singheiser, and W.J. Quadakkers, Int. J. Mater. Res. 101, 287 (2010).

    Article  Google Scholar 

  22. W.J. Quadakkers, T. Olszewski, J. Piron-Abellan, V. Shemet, and L. Singheiser, Mater. Sci. Forum 696, 194 (2011).

    Article  Google Scholar 

  23. E. Essuman, L.R. Walker, P.J. Maziasz, and B.A. Pint, Mater. Sci. Technol. 29, 822 (2013).

    Article  Google Scholar 

  24. H. Hindam and D.P. Whittle, J. Electrochem. Soc. 129, 1147 (1982).

    Article  Google Scholar 

  25. D.L. Douglass, Oxid. Met. 44, 81 (1995).

    Article  Google Scholar 

  26. M. Hänsel, C.A. Boddington, and D.J. Young, Corros. Sci. 45, 967 (2003).

    Article  Google Scholar 

  27. N. Xu, D. Monceau, D. Young, and J. Furtado, Corros. Sci. 50, 2398 (2008).

    Article  Google Scholar 

  28. T.D. Nguyen, J.Q. Zhang, and D.J. Young, Mater. High Temp. 32, 16 (2015).

    Article  Google Scholar 

  29. D.J. Young and B.A. Pint, Oxid. Met. 66, 137 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The research shown was sponsored by the U. S. Department of Energy, Office of Fossil Energy, Office of Coal and Power R&D. M. Howell, M. Stephens, T. Lowe, T. Jordan, R. Brese and D. Leonard assisted with the experimental work. M. P. Brady provided helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Keiser, J.R. Initial Assessment of Ni-Base Alloy Performance in 0.1 MPa and Supercritical CO2 . JOM 67, 2615–2620 (2015). https://doi.org/10.1007/s11837-015-1661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1661-8

Keywords

Navigation