Skip to main content
Log in

A Method for Efficient Transmittance Spectrum Prediction of Transparent Composite Electrodes

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The interest in indium-free transparent composite electrode (TCE), a thin metal layer embedded between two transparent metal oxide (TMO) layers resulting in TMO/metal/TMO composite structure, has grown recently with the advent of their high figures of merit and its potential application in photovoltaic applications. However, most of the work to date has focused on experimentally producing the best optically transmitting TCE. To better design TCEs and minimize experimental work, it would be useful to develop a model that predicts the optical transmission. In the current work, the transfer-matrix method is employed to calculate the transmittance spectrum of TCE. To validate this approach, the transmittance spectra of TiO2/Au/TiO2 and TiO2/Ag/TiO2 multilayer thin-film TCEs are calculated with use of extracted material parameters. The calculated transmittance spectrum of TiO2/Au/TiO2 matches the measured spectrum quite well. However, the calcualted transmittance of TiO2/Ag/TiO2 is higher than its measured transmittance. The presence of voids in the Ag film is probably responsible for the decreased transmittance of the TiO2/Ag/TiO2 sample, and the continuous Au film in TiO2/Au/TiO2 ensures a good agreement between transmittance prediction and measurement. Our approach is a reliable tool to predict the optical transmittance of TCE with continuous films, and it can efficiently expedite the selection from numerous possible combinations of transparent metal oxides and metals when developing TCEs for future photovoltaic applications. It can also serve as a convenient method to assess the continuity of embedded metal layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Sivaramakrishnan and T.L. Alford, Appl. Phys. Lett. 96, 2011109 (2010).

    Article  Google Scholar 

  2. A. Dhar and T.L. Alford, APL Mater. 1, 012102 (2013).

    Article  Google Scholar 

  3. A. Dhar and T.L. Alford, J. Appl. Phys. 112, 103113 (2012).

    Article  Google Scholar 

  4. A. Kumar, R. Srivastave, M.N. Kamalasanan, and D.S. Mehta, Opt. Lett. 37, 575 (2013).

    Article  Google Scholar 

  5. J.H. Lee, K.Y. Woo, K.H. Kim, H.D. Kim, and T.G. Kim, Opt. Lett. 38, 5055 (2013).

    Article  Google Scholar 

  6. C. Guillén and J. Herrero, Thin Solid Films 520, 1 (2011).

    Article  Google Scholar 

  7. L. Cattin, M. Morsli, F. Dahou, S.Y. Abe, A. Khelil, and J.C. Bernède, Thin Solid Films 518, 4560 (2010).

    Article  Google Scholar 

  8. D.R. Sahu, S.-Y. Lin, and J.-L. Huang, Appl. Surf. Sci. 252, 7509 (2006).

    Article  Google Scholar 

  9. C. Guillén and J. Herrero, Phys. Status Solidi A 206A, 1531 (2009).

    Article  Google Scholar 

  10. A. Dhar and T.L. Alford, MRS Proc. 1577, mrss11-1322-b06-04 (2013).

  11. J.A. Jeong, Y.S. Park, and H.K. Kim, J. Appl. Phys. 107, 023111 (2010).

    Article  Google Scholar 

  12. A. Dhar and T.L. Alford, ECS Solid State Lett. 3, N33 (2014).

    Article  Google Scholar 

  13. E. Hecht and A. Zajac, Optics (Reading, MA: Addison-Wesley, 1974), pp. 71–88, 301–306.

  14. P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, Appl. Opt. 45, 8419 (2006).

    Article  Google Scholar 

  15. W. Ewart, Applications of Interferometry (London: Methuen, 1950), pp. 76–78.

    Google Scholar 

  16. Z.B. Wang, M.G. Helander, X.F. Xu, D.P. Puzzo, J. Qiu, M.T. Greiner, and Z.H. Lu, J. Appl. Phys. 109, 053107 (2011).

    Article  Google Scholar 

  17. C.C. Katsidis and D.I. Siapkas, Appl. Opt. 41, 3978 (2002).

    Article  Google Scholar 

  18. E. Centurioni, Appl. Opt. 44, 7532 (2005).

    Article  Google Scholar 

  19. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, J. Appl. Phys. 88, 148 (2000).

    Article  Google Scholar 

  20. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (New York: Pergamon Press, 1963), pp. 80–91.

    MATH  Google Scholar 

  21. M.N. Polyanskiy, “Refractive index database,” http://refractiveindex.info.

  22. Y.C. Han, M.S. Lim, J.H. Park, and K.C. Choi, IEEE Electron Device Lett. 35, 238 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Science Foundation (C. Ying, Grant No. DMR-0902277) to whom the authors are greatly indebted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Alford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Dhar, A. & Alford, T.L. A Method for Efficient Transmittance Spectrum Prediction of Transparent Composite Electrodes. JOM 67, 1612–1616 (2015). https://doi.org/10.1007/s11837-015-1342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1342-7

Keywords

Navigation