Skip to main content
Log in

Performance assessment of TCO/metal/TCO multilayer transparent electrodes: from design concept to optimization

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Versatile multilayer designs based on a transparent conductive oxide (TCO)/metal/TCO structure are proposed to overcome the trade-off between their electrical and optical properties. The overall performance of the investigated multilayer designs based on ZnO/metal/ZnO and indium tin oxide (ITO)/metal/ITO structures is compared based on their Haacke figure of merit (FoM) at λ = 550 nm. The influence of both the thickness and position of the inserted silver and gold ultrathin metallic layer (ML) on the electrode FoM is studied. To address the trade-off between transparency and conductivity, a new hybrid approach combining the proposed multilayer designs and particle swarm optimization is conducted. The optimized multilayer design with the ITO/Ag/ITO structure is found to open a new avenue towards the achievement of ultrahigh FoM values of 135 × 10−3 Ω−1, superior to those found to date, with a high transmittance above 95% and a reduced sheet resistance of 4.7 Ω × sq−1. This enhancement can be attributed to the dual effects of the enhanced light management induced by effectively modulating the ML geometry and the reduced sheet resistance. The proposed design methodology therefore bridges the gap between high transparency and low sheet resistance, becoming suitable for use in high-performance optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wanga, T., Lib, B., Rena, N., Huang, L., Li, H.: Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering. Mater. Sci. Semicond. Process. 91, 73–80 (2019)

    Article  Google Scholar 

  2. Kim, J.H., Yer, I.H.: Characterization of ZnO nanowires grown on Ga-doped ZnO transparent conductive thin films: effect of deposition temperature of Ga-doped ZnO thin films. Ceram. Int. 42, 3304–3308 (2016)

    Article  Google Scholar 

  3. Park, Y., Nehm, F., Müller-Meskamp, L., Vandewal, K., Leo, K.: Optical display film as flexible and light trapping substrate for organic photovoltaics. Opt. Express 24, 974 (2016)

    Article  Google Scholar 

  4. Guillén, C., Herrero, J.: TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520, 1–17 (2011)

    Article  Google Scholar 

  5. Benhaya, A., Djeffal, F., Kacha, K., Ferhati, H., Bendjerad, A.: Role of ITO ultra-thin layer in improving electrical performance and thermal reliability of Au/ITO/Si/Au structure: an experimental investigation. Superlattices Microstruct. 120, 419–426 (2018)

    Article  Google Scholar 

  6. Sharma, V., Vyas, R., Bazylewski, P., Chang, G.S., Asokan, K., Sachdev, K.: Probing the highly transparent and conducting SnOx/Au/SnOx structure for futuristic TCO applications. RSC Adv. 6, 29135–29141 (2016)

    Article  Google Scholar 

  7. Wei, W., Hong, R., Wang, J., Tao, C., Zhang, D.: Electron-beam irradiation induced optical transmittance enhancement for Au/ITO and ITO/Au/ITO multilayer thin films. J. Mater. Sci. Technol. 33, 1107–1112 (2017)

    Article  Google Scholar 

  8. Shakiba, M., Kosarian, A., Farshidi, E.: Effects of processing parameters on crystalline structure and optoelectronic behavior of DC sputtered ITO thin film. J. Mater. Sci.-Mater. Electron. 28, 787–797 (2017)

    Article  Google Scholar 

  9. Taha, H., Jiang, Z.T., Yin, C.Y., Henry, D.J., Zhao, X., Trotter, G., Amri, A.: Novel approach for fabricating transparent and conducting SWCNTs/ITO thin films for optoelectronic applications. J. Phys. Chem. C 122, 3014–3027 (2018)

    Article  Google Scholar 

  10. Girtan, M.: Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)

    Article  Google Scholar 

  11. Hssein, M., Tuo, S., Benayoun, S., Cattin, L., Morsli, M., Mouchaal, Y., Addou, M., Khelil, A., Bernède, J.C.: Cu–Ag bi-layer films in dielectric/metal/dielectric transparent electrodes as ITO free electrode in organic photovoltaic devices. Org. Electron. 42, 73–180 (2017)

    Article  Google Scholar 

  12. Sharma, V., Kumar, P., Kumar, A., Surbhi, Asokan, K., Sachdev, K.: High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Solar Energy Mater. Solar Cells 169, 122–131 (2017)

    Article  Google Scholar 

  13. Miao, D., Jiang, S., Shang, S., Chen, Z.: Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering. Vacuum 106, 1–4 (2014)

    Article  Google Scholar 

  14. Chua, C., Wub, H., Huanga, J.: AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications. Mater. Sci. Eng. B 186, 117–121 (2014)

    Article  Google Scholar 

  15. Lee, S.Y., Park, Y.S., Seong, T.: Optimized ITO/Ag/ITO multilayers as a current spreading layer to enhance the light output of ultraviolet light-emitting diodes. J. Alloys Compd. 776, 960–964 (2019)

    Article  Google Scholar 

  16. Kima, J.H., Kim, D., Kimb, S.K., Yoo, Y.Z., Lee, J.H., Kim, S.W., Seong, T.Y.: Highly flexible Al-doped ZnO/Ag/Al-doped ZnO multilayer films deposited on PET substrates at room temperature. Ceram. Int. 42, 3473–3478 (2016)

    Article  Google Scholar 

  17. Hsu, C.L., Lin, Y.H., Wang, L.K., Hsueh, T.J., Chang, S.P., Chang, S.J.: Tunable UV- and visible-light photoresponse based on p-ZnO nanostructures/n-ZnO/glass peppered with Au nanoparticles. ACS Appl. Mater. Interfaces 9, 14935–14944 (2017)

    Article  Google Scholar 

  18. Hsu, C.L., Wu, H.Y., Fang, C.C., Chang, S.P.: Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles. ACS Appl. Energy Mater. 76, 393–399 (2018)

    Google Scholar 

  19. Bastús, N.G., Piella, J., Puntes, V.F.: Quantifying the sensitivity of multipolar (dipolar, quadrupolar and octapolar) surface plasmon resonances in silver nanoparticles: the effect of size, composition and surface coating. Langmuir 12, 290–300 (2016)

    Article  Google Scholar 

  20. Lee, S.Y., Cho, E.-S., Kwon, S.J.: The optical analyses of the multilayer transparent electrode and the formation of ITO/Mesh-Ag/ITO multilayers for enhancing an optical transmittance. Appl. Surf. Sci. 487, 990–999 (2019)

    Article  Google Scholar 

  21. Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. J. Opt. Soc. Am. B 36, 401–407 (2019)

    Article  Google Scholar 

  22. Gao, E., Liu, Z., Li, H., Xu, H., Zhang, Z., Luo, X., Xiong, C., Liu, C., Zhang, B., Zhou, F.: Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt. Express 27, 13884–13894 (2019)

    Article  Google Scholar 

  23. Atlas User’s manual: Device Simulation Software (2012)

  24. Ferhati, H., Djeffal, F.: New high performance ultraviolet (MSM) TiO2/glass photodetector based on diffraction grating for optoelectronic applications. Optik 127, 7202–7209 (2016)

    Article  Google Scholar 

  25. Ferhati, H., Djeffal, F., Srairi, F.: Enhancement of the absorbance figure of merit in amorphous-silicon pin solar cell by using optimized intermediate metallic layers. Optik 130, 473–480 (2017)

    Article  Google Scholar 

  26. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. J. IEEE Trans. Evolut. Comput. 73, 6–58 (2002)

    Google Scholar 

  27. Djeffal, F., Lakhdar, N.: A two-dimensional analytical model of subthreshold behavior to study the scaling capability of deep submicron double-gate GaN-MESFETs. J. Comput. Electron. 10, 382–387 (2011)

    Article  Google Scholar 

  28. Djeffal, F., Bendib, T., Benzid, R., Benhaya, A.: An approach based on particle swarm computation to study the nanoscale DG MOSFET-based circuits. Turk. J. Electr. Eng Comput. Sci. 18, 1131–1140 (2010)

    Google Scholar 

  29. Ferhati, H., Djeffal, F.: Role of gradual gate doping engineering in improving phototransistor performance for ultra-low power applications. J. Comput. Electron. 15, 550–556 (2016)

    Article  Google Scholar 

  30. Bencherif, H., Djeffal, F., Ferhati, H.: Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry. Superlattices Microstruct. 97, 303–312 (2016)

    Article  Google Scholar 

  31. Kim, B.K., Lee, B.H., Cho, K.-S., Lee, S.Y.: Simulation and optimization of layer thickness of amorphous oxide SIZO/Ag/SIZO multilayer to enhance transmittance of transparent electrodes without sacrificing sheet resistance. J. Alloys Comp. 798, 622–627 (2019)

    Article  Google Scholar 

  32. Sibin, K.P., Selvakumar, N., Kumar, A., Dey, A., Sridhara, N., Shashikala, H.D., Sharma, A.K., Barshilia, H.C.: Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Sol. Energy 141, 118–126 (2017)

    Article  Google Scholar 

  33. El Hajj, A., Lucas, B., Chakaroun, M., Antony, R., Ratier, B., Aldissi, M.: Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by ion beam sputtering for optoelectronic devices. Thin Solid Films 520, 4666–4668 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the General Directorate for Scientific Research and Technological Development (DGRSDT), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djeffal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferhati, H., Djeffal, F. Performance assessment of TCO/metal/TCO multilayer transparent electrodes: from design concept to optimization. J Comput Electron 19, 815–824 (2020). https://doi.org/10.1007/s10825-020-01459-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01459-9

Keywords

Navigation