Skip to main content
Log in

Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Novel alloys with high aluminum addition, so-called δ-transformation-induced plasticity (TRIP), have been developed recently for the third generation of advanced high strength steels for automotive applications, which are promising owing to the potential weldability as well as the combination of strength and ductility. In addition, the high aluminum addition results in a density reduction of approximately 5% in these δ-TRIP alloys without sacrificing the Young’s modulus in uniaxial tensile tests. The origin of δ-TRIP concept is introduced first with a review of the published work on δ-TRIP alloys. This review will include methodology for retention of δ-ferrite in casting, rolling and welding conditions, microstructure evolution by austempering, as well as microstructures–properties relationship involving the roles of blocky and lath retained austenite. In addition, currently unresolved problems will be discussed regarding the fundamentals of materials design, automotive application, and industrial manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).

    Google Scholar 

  2. R. Rana, C. Liu, and R.K. Ray, Scripta Mater. 68, 354 (2013).

    Article  Google Scholar 

  3. O. Akisue and M. Usuda, Nippon Steel Tech. Rep. 57 (1993).

  4. O. Matsumura, Y. Sakuma, and H. Takechi, Trans. ISIJ 27, 570 (1987).

    Article  Google Scholar 

  5. O. Matsumura, Y. Sakuma, and H. Takechi, Scripta Metall. 21, 1301 (1987).

    Article  Google Scholar 

  6. K.-I. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa, ISIJ Int. 33, 775 (1993).

    Article  Google Scholar 

  7. K.-I. Sugimoto, N. Usui, M. Kobayashi, and S.-I. Hashimoto, ISIJ Int. 32, 1311 (1992).

    Article  Google Scholar 

  8. P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay, Acta Mater. 49, 139 (2001).

    Article  Google Scholar 

  9. P.J. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259 (2004).

    Article  Google Scholar 

  10. P.J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K.T. Conlon, and F. Delannay, Philos. Mag. 86, 2371 (2006).

    Article  Google Scholar 

  11. B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004).

    Article  Google Scholar 

  12. G. Lacroix, T. Pardoen, and P.J. Jacques, Acta Mater. 56, 3900 (2008).

    Article  Google Scholar 

  13. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay, Acta Mater. 55, 3681 (2007).

    Article  Google Scholar 

  14. F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen, Acta Mater. 55, 3695 (2007).

    Article  Google Scholar 

  15. I. Choi, D.M. Bruce, S. Kim, C.G. Lee, S. Park, D.K. Matlock, and J.G. Speer, ISIJ Int. 42, 1483 (2002).

    Article  Google Scholar 

  16. P.J. Jacques, E. Girault, P. Harlet, and F. Delannay, ISIJ Int. 41, 1061 (2001).

    Article  Google Scholar 

  17. P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J.V. Humbeeck, and F. Delannay, ISIJ Int. 41, 1068 (2001).

    Article  Google Scholar 

  18. H.K.D.H. Bhadeshia and D.V. Edmonds, Metall. Mater. Trans. A 10A, 895 (1979).

    Article  Google Scholar 

  19. H.K.D.H. Bhadeshia and D.V. Edmonds, Met. Sci. 17, 411 (1983).

    Article  Google Scholar 

  20. H.K.D.H. Bhadeshia and D.V. Edmonds, Met. Sci. 17, 420 (1983).

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia, SolidSolid Phase Transformations, ed. H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman (Warrendale, PA: The Metallurgical Society of AIME, 1981), pp. 1041–1048.

  22. H.K.D.H. Bhadeshia, Bainite in Steels: Transformations, Microstructure and Properties, 2nd ed. (London, U.K: Institute of Materials, 2001).

    Google Scholar 

  23. W.S. Owen, Trans. ASM 46, 812 (1954).

    Google Scholar 

  24. J. Gordine and I. Codd, J. Iron Steel Inst. 207, 461 (1969).

    Google Scholar 

  25. R.M. Hobbs, G.W. Lorimer, and N. Ridley, J. Iron Steel Inst. 210, 757–764 (1972).

  26. N. Imai, N. Komatsubara, and K. Kunishige, CAMP-ISIJ 8, 572–575 (1995).

  27. M.D. Meyer, D. Vanderschueren, and B.C.D. Cooman, ISIJ Int. 39, 813 (1999).

    Article  Google Scholar 

  28. D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim, Scripta Mater. 57, 1097 (2007).

    Article  Google Scholar 

  29. H.C. Chen, H. Era, and M. Shimizu, Metall. Trans. A 20, 437 (1989).

    Article  Google Scholar 

  30. C. Jing, D.-W. Suh, C.-S. Oh, Z. Wang, and S.-J. Kim, Met. Mater. Int. 13, 13 (2007).

    Article  Google Scholar 

  31. D.J. Hall, H.K.D.H. Bhadeshia, and W.M. Stobbs, J. Phys. Paris C4, 499 (1982).

    Google Scholar 

  32. K. Zhu, H. Chen, J.-P. Masse, O. Bouaziz, and G. Gachet, Acta Mater. 61, 6025 (2013).

    Article  Google Scholar 

  33. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, Svd. Zwaag, and F. Delannay, Mater. Sci. Eng. A 373–275, 475 (1999).

    Article  Google Scholar 

  34. O. Matsumurya, Y. Sakuma, Y. Ishli, and J. Zhao, ISIJ Int. 32, 1110 (1992).

    Article  Google Scholar 

  35. Y. Sakuma, O. Matsumura, and O. Akisue, ISIJ Int. 31, 1348 (1991).

    Article  Google Scholar 

  36. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma, and Y. Matsuda, ISIJ Int. 35, 886 (1995).

    Article  Google Scholar 

  37. T. Fukagawa, H. Okada, and Y. Maehara, ISIJ Int. 34, 906 (1994).

    Article  Google Scholar 

  38. B. Mintz, Int. Mater. Rev. 46, 169 (2001).

    Article  Google Scholar 

  39. E.J. Song, D.W. Suh, and H.K.D.H. Bhadeshia, Ironmak. Steelmak. 39, 599 (2012).

    Article  Google Scholar 

  40. J. Maki, J. Mahieu, B.C. De Cooman, and S. Claessens, Mater. Sci. Technol. 19, 125 (2003).

    Article  Google Scholar 

  41. E.M. Bellhouse, A.I.M. Mertens, and J.R. McDermid, Mater. Sci. Eng. A 463, 147 (2007).

    Article  Google Scholar 

  42. S. Chatterjee, M. Murugananth, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 819 (2007).

    Article  Google Scholar 

  43. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson, and S.M. Martin, CALPHAD 26, 229 (2002).

    Article  Google Scholar 

  44. A. Arora, G. Roy, and T. DebRoy, Sci. Tech. Weld. Joining 15, 423 (2010).

    Article  Google Scholar 

  45. Ø. Grong and D. Grong, Metallurgical Modelling of Welding (London, U.K: Institute of Materials, 1997).

    Google Scholar 

  46. T. Nishi, T. Saito, and A. Yamada, Nippon Steel Tech. Rep. 20, 37–44 (1982).

  47. H.L. Yi, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang, South Korea, 2010.

  48. H.L. Yi, K.Y. Lee, J.H. Lim, and H.K.D.H. Bhadeshia, Sci. Technol. Weld. Joining 15, 619 (2010).

    Article  Google Scholar 

  49. H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, and G.D. Wang, Scripta Mater. 68, 370 (2013).

    Article  Google Scholar 

  50. R. Howell and D.V. Aken, Iron Steel Technol. 6, 192 (2009).

    Google Scholar 

  51. D.-W. Suh and N.J. Kim, Scripta Mater. 68, 337 (2013).

    Article  Google Scholar 

  52. H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 26, 817 (2010).

    Article  Google Scholar 

  53. J. Bratberg, TCFE6-TCS Steels/Fe-Alloys Database, version 6.2 (Thermo-Calc software AB, Stockholm, Sweden, 2011).

  54. H.L. Yi, K.Y. Lee, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 27, 525 (2011).

    Article  Google Scholar 

  55. G. Jung, K. Lee, J. Lee, H. Bhadeshia, and D. Suh, Sci. Technol. Weld. Joining 17, 92 (2012).

    Article  Google Scholar 

  56. H.L. Yi, K.Y. Lee, and H.K.D.H. Bhadeshia, Proc. R. Soc. A 467, 234 (2011).

    Article  Google Scholar 

  57. H.L. Yi, P. Chen, and H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 45, 3512–3518 (2014).

  58. H.L. Yi, K.Y. Lee, and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 528, 5900 (2011).

    Article  Google Scholar 

  59. S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia, Mater. Sci. Tech. 22, 641 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Grant 51204051) and the China Postdoctoral Science Foundation (Grant 2012M510074), as well as by the Fundamental Research Funds for the Central Universities (Grant N120507001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H.L. Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress. JOM 66, 1759–1769 (2014). https://doi.org/10.1007/s11837-014-1089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1089-6

Keywords

Navigation