Skip to main content
Log in

Tailoring the strength-ductility balance of a commercial austenitic stainless steel with combined TWIP and TRIP effects

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The sequential twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) effects were induced in a commercial AISI 304L stainless steel by tailoring the average austenite grain size (via thermomechanical processing of cold rolling and reversion/recrystallization annealing), leading to a combination of high yield stress and total elongation as well as a remarkable strength-ductility synergy similar to advanced high-strength steels (AHSS) for automotive industry. In fact, the refinement of grains promoted the TWIP effect at the expense of the TRIP effect due to its effect on increasing the apparent stacking fault energy; while the coarsening/growth of grains led to a pronounced TRIP effect via deformation-induced martensitic phase transformation during straining. Moreover, the TRIP/TWIP effects were characterized by the simple work-hardening analysis such as slope change and appearance of extremum points on the curves of work-hardening rate, logarithmic and parabolic segments on the curves of instantaneous work-hardening exponent, and deviations from the strain-hardening Hollomon lines. The results were supported by the interrupted tensile tests and detailed electron backscattered diffraction (EBSD) analysis, where the merit of the TWIP-TRIP steels was shown in the case of a commercial austenitic stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Acknowledgments

Saeed Sadeghpour would like to thank Jane and Aatos Erkon säätiö (JAES) and Tiina ja Antti Herlinin säätiö (TAHS) for their financial supports on Advanced Steels for Green Planet Project. The authors would also like to greatly thank the members of the “Formability Laboratory” and “Advanced Steels and Thermomechanically Processed Engineering Materials Laboratory” for their help and support.

References

  1. Järvenpää A, Ghosh S, Khosravifard A, Jaskari M, Hamada A. A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing. Mater Sci Eng, A. 2021;808: 140917.

    Google Scholar 

  2. Pradhan SK, Bhuyan P, Bairi LR, Mandal S. Comprehending the role of individual microstructural features on electrochemical response and passive film behaviour in type 304 austenitic stainless steel. Corros Sci. 2021;180: 109187.

    CAS  Google Scholar 

  3. Sun G, Du L, Hu J, Zhang B, Misra RDK. On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Mater Sci Eng, A. 2019;746:341–55.

    CAS  Google Scholar 

  4. Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civil Mech Eng. 2020;20:124.

    Google Scholar 

  5. Dong FY, Zhang P, Pang JC, Chen DM, Yang K, Zhang ZF. Optimizing strength and ductility of austenitic stainless steels through equal-channel angular pressing and adding nitrogen element. Mater Sci Eng, A. 2013;587:185–91.

    CAS  Google Scholar 

  6. Zhang M, Chen H, Wang Y, Wang S, Li R, Li S, Wang YD. Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel. J Mater Sci Technol. 2019;35(8):1779–86.

    CAS  Google Scholar 

  7. Cios G, Tokarski T, Żywczak A, Dziurka R, Stępień M, Gondek Ł, Marciszko M, Pawłowski B, Wieczerzak K, Bała P. The investigation of strain-induced martensite reverse transformation in AISI 304 austenitic stainless steel. Metall Mater Trans A. 2017;48:4999–5008.

    CAS  Google Scholar 

  8. Hamada AS, Karjalainen LP, Misra RDK, Talonen J. Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels. Mater Sci Eng, A. 2013;559:336–44.

    CAS  Google Scholar 

  9. Weiß A, Gutte H, Scheller PR. Deformation induced martensite formation and its effect on transformation induced plasticity (TRIP). Steel Res Int. 2006;77(9–10):727–32.

    Google Scholar 

  10. Järvenpää A, Jaskari M, Kisko A, Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels. Metals. 2020;10(2):281.

    Google Scholar 

  11. Qin W, Li J, Liu Y, Kang J, Zhu L, Shu D, Peng P, She D, Meng D, Li Y. Effects of grain size on tensile property and fracture morphology of 316L stainless steel. Mater Lett. 2019;254:116–9.

    CAS  Google Scholar 

  12. Masumura T, Fujino K, Tsuchiyama T, Takaki S, Kimura K. Effect of carbon and nitrogen on Md30 in metastable austenitic stainless steel. ISIJ Int. 2021;61:546–55.

    CAS  Google Scholar 

  13. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel. Int J Plast. 2023;160: 103502.

    CAS  Google Scholar 

  14. Byun TS, Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004;52:3889–99.

    ADS  CAS  Google Scholar 

  15. Talonen J, Hänninen H, Nenonen P, Pape G. Effect of strain rate on the strain-induced γ→ α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A. 2005;36(2):421–32.

    Google Scholar 

  16. Ahmedabadi PM, Kain V. Kinetics parameters for deformation-induced martensitic transformation in austenitic stainless steels. Philos Mag Lett. 2020;100:555–60.

    ADS  CAS  Google Scholar 

  17. De AK, Murdock DC, Mataya MC, Speer JG, Matlock DK. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Mater. 2004;50:1445–9.

    CAS  Google Scholar 

  18. De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.

    ADS  Google Scholar 

  19. Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater Sci Technol. 1998;14(12):1213–7.

    ADS  Google Scholar 

  20. Grässel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast. 2000;16:1391–409.

    Google Scholar 

  21. Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129–41.

    ADS  CAS  Google Scholar 

  22. Shterner V, Timokhina IB, Beladi H. On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Mater Sci Eng, A. 2016;669:437–46.

    CAS  Google Scholar 

  23. Jabłońska MB. Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review. Arch Civil Mech Eng. 2023;23(2):135.

    Google Scholar 

  24. Jabłońska MB, Jasiak K, Kowalczyk K, Bednarczyk I, Skwarski M, Tkocz M, Gronostajski Z. Deformation behaviour of high-manganese steel with addition of niobium under quasi-static tensile loading. Mater Sci-Pol. 2022;40(3):1–11.

    ADS  Google Scholar 

  25. Jabłońska MB, Jasiak K, Kowalczyk K, Skwarski M, Rodak K, Gronostajski Z. The influence of the heat generation during deformation on the mechanical properties and microstructure of the selected TWIP steels. IntJ Mater Form. 2023;16(3):1–17.

    Google Scholar 

  26. Molnár D, Sun X, Lu S, Li W, Engberg G, Vitos L. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel. Mater Sci Eng, A. 2019;759:490–7.

    Google Scholar 

  27. Lee CY, Jeong J, Han J, Lee SJ, Lee S, Lee YK. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater. 2015;84:1–8.

    CAS  Google Scholar 

  28. Wang MM, Tasan CC, Ponge D, Kostka A, Raabe D. Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater. 2014;79:268–81.

    ADS  CAS  Google Scholar 

  29. Wang T, Shukla S, Gwalani B, Sinha S, Thapliyal S, Frank M, Mishra RS. Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Sci Rep. 2021;11(1):1–10.

    Google Scholar 

  30. Benzing JT, Liu Y, Zhang X, Luecke WE, Ponge D, Dutta A, Oskay C, Raabe D, Wittig JE. Experimental and numerical study of mechanical properties of multi-phase medium-Mn TWIP-TRIP steel: influences of strain rate and phase constituents. Acta Mater. 2019;177:250–65.

    ADS  CAS  Google Scholar 

  31. Kalsar R, Sanamar S, Schell N, Brokmeier HG, Saha R, Ghosh P, Suwas S. In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation. Mater Sci Eng, A. 2022;857: 144013.

    CAS  Google Scholar 

  32. Dobrzański LA, Borek W. Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels. Arch Civil Mech Eng. 2012;12:299–304.

    Google Scholar 

  33. Grajcar A, Borek W. Thermo-mechanical processing of high-manganese austenitic TWIP-type steels. Arch Civil Mech Eng. 2008;8(4):29–38.

    Google Scholar 

  34. Zamani MR, Mirzadeh H, Malekan M, Weißensteiner I, Roostaei M. Unveiling the strengthening mechanisms of as-cast micro-alloyed CrMnFeCoNi high-entropy alloys. J Alloy Compd. 2023;957: 170443.

    CAS  Google Scholar 

  35. Lu J, Hultman L, Holmström E, Antonsson KH, Grehk M, Li W, Vitos L, Golpayegani A. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016;111:39–46.

    ADS  CAS  Google Scholar 

  36. Zambrano OA (2016) Stacking fault energy maps of Fe–Mn–Al–C–Si steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol, 138(4)

  37. Jun JH, Choi CS. Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ→ ε martensitic transformation in Fe–Mn alloy. Mater Sci Eng, A. 1998;257(2):353–6.

    Google Scholar 

  38. Huang M, Wang C, Wang L, Wang J, Mogucheva A, Xu W. Influence of DIMT on impact toughness: relationship between crack propagation and the α′-martensite morphology in austenitic steel. Mater Sci Eng, A. 2022;844: 143191.

    CAS  Google Scholar 

  39. Polatidis E, Čapek J, Arabi-Hashemi A, Leinenbach C, Strobl M. High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power. Scripta Mater. 2020;176:53–7.

    CAS  Google Scholar 

  40. Rahman KM, Vorontsov VA, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 2015;89:247–57.

    ADS  CAS  Google Scholar 

  41. Meyers MA, Andrade UR, Chokshi AH. The effect of grain size on the high-strain, high-strain-rate behavior of copper. Metall and Mater Trans A. 1995;26:2881–93.

    ADS  Google Scholar 

  42. Shahmir H, Mehranpour MS, Shams SAA, Lee CS, Langdon TG (2022) Grain Size Tailoring to Control Strain Hardening and Improve the Mechanical Properties of a CoCrFeNiMn High-Entropy Alloy. High Entropy Alloys Mater, 1–12

  43. Razzaghi M, Mirzadeh H, Emamy M. Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy. Vacuum. 2019;167:214–22.

    ADS  CAS  Google Scholar 

  44. Zergani A, Mirzadeh H, Mahmudi R. Unraveling the effect of deformation temperature on the mechanical behavior and transformation-induced plasticity of the SUS304L stainless steel. Steel Res Int. 2020;91(9):2000114.

    CAS  Google Scholar 

  45. Dieter GE, Bacon D. Mechanical Metallurgy. 3rd ed. New York: McGraw-Hill; 1988.

    Google Scholar 

  46. Deng Q, Zhang Y, Liu Z, Chang Z, Su N, Wu Y, Hao L, Peng L, Ding W. Laser powder bed fusion of an age-hardenable Mg-10Gd-0.2 Zr alloy with excellent strength-ductility synergy. J Alloys Compounds. 2022;910:164863.

    CAS  Google Scholar 

  47. Deng Q, Wu Y, Zhu W, Chen K, Liu D, Peng L, Ding W. Effect of heat treatment on microstructure evolution and mechanical properties of selective laser melted Mg-11Gd-2Zn-0.4 Zr alloy. Mater Sci Eng: A. 2022;829:142139.

    CAS  Google Scholar 

  48. Gutiérrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater. 2012;60:5791–802.

    ADS  Google Scholar 

  49. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng, A. 2020;795: 140023.

    CAS  Google Scholar 

  50. Xiong RG, Fu RY, Yu SU, Qian LI, Wei XC, Lin LI. Tensile properties of TWIP steel at high strain rate. J Iron Steel Res Int. 2009;16:81–21.

    Google Scholar 

  51. Lee YK, Choi C. Driving force for γ→ ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system. Metall Mater Trans A. 2000;31:355–60.

    Google Scholar 

  52. Li X, Chen L, Zhao Y, Yuan X, Misra RDK. Influence of original austenite grain size on tensile properties of a high-manganese transformation-induced plasticity (TRIP) steel. Mater Sci Eng, A. 2018;715:257–65.

    CAS  Google Scholar 

  53. Huang M, Wang L, Wang C, Mogucheva A, Xu W. Characterization of deformation-induced martensite with various AGSs upon charpy impact loading and correlation with transformation mechanisms. Mater Charact. 2022;184: 111704.

    CAS  Google Scholar 

  54. Mosecker L, Saeed-Akbari A. Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics. Sci Technol Adv Mater. 2013;14: 033001.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng Z, Zecevic M, Knezevic M. Stress-assisted (γ→α′) and strain-induced (γ→ ε→ α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels. Int J Plast. 2021;136: 102807.

    CAS  Google Scholar 

  56. Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171–273.

    CAS  Google Scholar 

  57. Karthik GM, Kim ES, Sathiyamoorthi P, Zargaran A, Jeong SG, Xiong R, Kang SH, Cho JW, Kim HS. Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Addit Manuf. 2021;47: 102314.

    CAS  Google Scholar 

  58. Nabizada A, Zarei-Hanzaki A, Abedi HR, Barati MH, Asghari-Rad P, Kim HS. The high temperature mechanical properties and the correlated microstructure/texture evolutions of a TWIP high entropy alloy. Mater Sci Eng, A. 2021;802: 140600.

    CAS  Google Scholar 

  59. Luo ZC, Huang MX. Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scripta Mater. 2018;142:28–31.

    CAS  Google Scholar 

  60. Meyers MA, Chawla KK. Mechanical behavior of materials. Cambridge University Press; 2008.

    Google Scholar 

  61. Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi SM. Tensile deformation behavior of high manganese austenitic steel: the role of grain size. Mater Des. 2010;31:3395–402.

    CAS  Google Scholar 

  62. Mahato B, Shee SK, Sahu T, Chowdhury SG, Sahu P, Porter DA, Karjalainen LP. An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater. 2015;86:69–79.

    ADS  CAS  Google Scholar 

  63. Kang S, Jung JG, Kang M, Woo W, Lee YK. The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6 C–1.5 Al twinning-induced plasticity steel. Mater Sci Eng, A. 2016;652:212–20.

    CAS  Google Scholar 

  64. Renard K, Jacques PJ. On the relationship between work hardening and twinning rate in TWIP steels. Mater Sci Eng, A. 2012;542:8–14.

    CAS  Google Scholar 

  65. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Dependency of work-hardening behavior of a metastable austenitic stainless steel on the nucleation site of deformation-induced martensite. Mater Sci Eng, A. 2023;868: 144600.

    CAS  Google Scholar 

  66. Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R. Explaining the drop of work-hardening rate and limitation of transformation-induced plasticity effect in metastable stainless steels during tensile deformation. Scripta Mater. 2023;231: 115465.

    CAS  Google Scholar 

  67. Shen YF, Li XX, Sun X, Wang YD, Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Mater Sci Eng, A. 2012;552:514–22.

    CAS  Google Scholar 

  68. Tian Y, Gorbatov OI, Borgenstam A, Ruban AV, Hedström P. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy. Metall and Mater Trans A. 2017;48:1–7.

    ADS  CAS  Google Scholar 

  69. Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153.

    Google Scholar 

  70. Varma SK, Kalyanam J, Murk LE, Srinivas V. Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing. J Mater Sci Lett. 1994;13:107–11.

    CAS  Google Scholar 

  71. Nohara K, Ono Y, Ohashi N. Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. Tetsu-to-Hagané. 1977;63(5):772–82.

    CAS  Google Scholar 

  72. Sohrabi MJ, Mirzadeh H, Dehghanian C. Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. J Mater Eng Perform. 2020;29:3233–42.

    CAS  Google Scholar 

  73. Zhou Z, Wang S, Li J, Li Y, Wu X, Zhu Y. Hardening after annealing in nanostructured 316L stainless steel. Nano Mater Sci. 2020;2:80–2.

    Google Scholar 

  74. Hong Y, Zhou C, Zheng Y, Zhang L, Zheng J, Chen X, An B. Formation of strain-induced martensite in selective laser melting austenitic stainless steel. Mater Sci Eng, A. 2019;740:420–6.

    Google Scholar 

  75. Grajcar A, Kuziak R, Zalecki W. Third generation of AHSS with increased fraction of retained austenite for the automotive industry. Arch civil Mech Eng. 2012;12:334–41.

    Google Scholar 

Download references

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The manuscript has been prepared by the contribution of all authors, it is the original authors work, it has not been published before, it has been solely submitted to this journal, and if accepted, it will not be submitted to any other journal in any language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, M.J., Mirzadeh, H., Sadeghpour, S. et al. Tailoring the strength-ductility balance of a commercial austenitic stainless steel with combined TWIP and TRIP effects. Archiv.Civ.Mech.Eng 23, 170 (2023). https://doi.org/10.1007/s43452-023-00718-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00718-3

Keywords

Navigation