Skip to main content
Log in

Grain Boundary Contributions to Hydrogen-Affected Plasticity in Ni-201

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement of structural materials, such as nickel-based alloys, is often characterized by enhanced dislocation processes as well as grain boundary decohesion leading to macroscale intergranular fracture. Nanoindentation and scanning probe microscopy (SPM) were used to characterize slip transfer across random grain boundaries and Σ3 recrystallization twins in annealed Ni-201. Thermal hydrogen charging leads to an increase in slip step width within pileups produced by nanoindentation along grain boundaries. The likelihood of slip transmission in the presence of hydrogen depends on the ease of slip within adjacent grains as well as on the misorientation of the grain boundary between them. The observed changes suggest that hydrogen limits dislocation cross-slip while increasing overall dislocation mobility. Coupled nanoindentation and SPM investigations provide a unique, local method for analyzing hydrogen effects on dislocation plasticity, which will be useful in developing grain-boundary-engineered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.K. Birnbaum, MRS Bull. 28, 479 (2003).

    Article  Google Scholar 

  2. W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ed. R.P. Gangloff and B.P. Somerday (Philadelphia, PA: Woodhead, 2012), pp. 209–46.

  3. A. Kimura and H.K. Birnbaum, Acta Metall. 36, 757 (1988).

    Article  Google Scholar 

  4. J. Kameda and C.J. McMahon, Metall. Mater. Trans. A 11, 91 (1980).

    Google Scholar 

  5. T. Takeda and C.J. McMahon, Metall. Mater. Trans. A 12, 1255 (1981).

    Article  Google Scholar 

  6. W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).

    Article  Google Scholar 

  7. R.P. Gangloff, Comprehensive Structural Integrity, ed. I. Milne, R.O. Ritchie, and B. Karihaloo (New York: Elsevier Science, 2003), pp. 31–101.

  8. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Acta Met. Mater. 42, 475 (1994).

    Article  Google Scholar 

  9. N.R. Moody, M.W. Perra, and S.L. Robinson, Scripta Metall. 22, 1261 (1988).

    Article  Google Scholar 

  10. C.J. McMahon, Eng. Fract. Mech. 68, 773 (2001).

    Article  Google Scholar 

  11. S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).

    Article  Google Scholar 

  12. R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).

    Article  Google Scholar 

  13. M. Wada, N. Akaiwa, and T. Mori, Philos. Mag. A 55, 389 (1987).

    Article  Google Scholar 

  14. A. Van der Ven and G. Ceder, Acta Mater. 52, 1223 (2004).

    Article  Google Scholar 

  15. M. Dadfarnia, P. Novak, D.C. Ahn, J.B. Liu, P. Sofronis, D.D. Johnson, and I.M. Robertson, Adv. Mater. 22, 1128 (2010).

    Article  Google Scholar 

  16. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).

    Article  Google Scholar 

  17. Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scripta Mater. 43, 245 (2000).

    Article  Google Scholar 

  18. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62, 49 (1949).

    Article  Google Scholar 

  19. P. Sofronis and H.K. Birnbaum, J. Mech. Phys. Solids 43, 49 (1995).

    Article  MATH  Google Scholar 

  20. E. Sirois and H.K. Birnbaum, Acta Metall. 40, 1377 (1992).

    Article  Google Scholar 

  21. I.M. Robertson, M.L. Martin, and J.A. Fenske, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, ed. R.P. Gangloff and B.P. Somerday (Philadelphia, PA: Woodhead, 2012), pp. 166–206.

  22. T. Tabata and H.K. Birnbaum, Scripta Metall. 17, 947 (1983).

    Article  Google Scholar 

  23. I.M. Robertson and H.K. Birnbaum, Acta Metall. 34, 353 (1986).

    Article  Google Scholar 

  24. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 2739 (2012).

    Article  Google Scholar 

  25. T. Matsumoto, J. Eastman, and H.K. Birnbaum, Scripta Metall. 15, 1033 (1981).

    Article  Google Scholar 

  26. G.M. Bond, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 2193 (1988).

    Article  Google Scholar 

  27. I.M. Robertson, Eng. Fract. Mech. 64, 649 (1999).

    Article  Google Scholar 

  28. S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie, Acta Mater. 57, 4148 (2009).

    Article  Google Scholar 

  29. A. Barnoush and H. Vehoff, Acta Mater. 58, 5274 (2010).

    Article  Google Scholar 

  30. A. Barnoush and H. Vehoff, Scripta Mater. 58, 747 (2008).

    Article  Google Scholar 

  31. A. Barnoush, B. Yang, and H. Vehoff, Adv. Solid State Phys. 47, 253 (2008).

    Article  Google Scholar 

  32. A. Barnoush, M. Asgari, and R. Johnsen, Scripta Mater. 66, 414 (2012).

    Article  Google Scholar 

  33. N. Kheradmand, J. Dake, and A. Barnoush, Philos. Mag. 92, 3216 (2012).

    Article  Google Scholar 

  34. R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Trans. A 13, 241 (1982).

    Article  Google Scholar 

  35. C.B. Carter and S.M. Holmes, Philos. Mag. 35, 1161 (1977).

    Article  Google Scholar 

  36. N.A. Stelmashenko, M.G. Walls, L.M. Brown, and YuV Milman, Acta Metall. Mater. 41, 2855 (1993).

    Article  Google Scholar 

  37. K.A. Nibur and D.F. Bahr, Scripta Mater. 49, 1055 (2003).

    Article  Google Scholar 

  38. L.E. Samuels and T.O. Mulhearn, J. Mech. Phys. Solids 5, 125 (1957).

    Article  Google Scholar 

  39. M. Munawar Chaudhri, Philos. Mag. A 74, 1213 (1996).

    Article  Google Scholar 

  40. M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Acta Mater. 59, 283 (2011).

    Article  Google Scholar 

  41. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Metall. Trans. A 21, 2437 (1990).

    Article  Google Scholar 

  42. L.C. Lim and R. Raj, Acta Metall. 33, 1577 (1985).

    Article  Google Scholar 

  43. N. Kheradmand, H. Vehoff, and A. Barnoush, Acta Mater. 61, 7454 (2013).

    Article  Google Scholar 

  44. N. Kheradmand and H. Vehoff, Adv. Eng. Mater. 14, 153 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Stewardship Science Graduate Fellowship Program under grant number DE-FC52-08NA28752 (to S.K.L.). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank J.A. Campbell for assistance with hydrogen charging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, S.K., Somerday, B.P., Moody, N.R. et al. Grain Boundary Contributions to Hydrogen-Affected Plasticity in Ni-201. JOM 66, 1383–1389 (2014). https://doi.org/10.1007/s11837-014-1062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1062-4

Keywords

Navigation