Skip to main content

Effect of Hydrogen and Grain Boundaries on Dislocation Nucleation and Multiplication Examined with a NI-AFM

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 47))

Abstract

A nanoindenting AFM(NI-AFM) with an environment chamber was constructed to study the effect of hydrogen on decohesion and dislocation nucleation and the effect of grain boundaries on dislocation nucleation and multiplication. Ultra fine grained Ni single crystals were examined. It could be clearly shown that hydrogen influences the pop in width and length. Testing single grains with grain sizes below one micron at different rates inside a NI-AFM showed that the rate dependence of ultra fine grained Ni is a result of the interaction of the growing dislocation loops with the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Yang, H. Vehoff: The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation, Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 95, 499–504 (2004)

    Google Scholar 

  2. Z. Zhang, H. Kristiansen, J. Liu: A method for determining elastic properties of micron-sized polymer particles by using flat punch test, Computational Materials Science 39(2), 305–314 (2007)

    Article  Google Scholar 

  3. M. D. Uchic, D. M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Materials Science and Engineering A 400–401, 268–278 (2005)

    Article  Google Scholar 

  4. C. Volkert, E. Lilleodden: Size effects in the deformation of sub-micron Au columns, Philosophical Magazine 86 (33-35 SPEC. ISSUE), 5567–5579 (2006)

    Article  ADS  Google Scholar 

  5. B. Yang, H. Vehoff: Dependence of nanohardness upon indentation size and grain size — a local examination of the interaction between dislocations and grain boundaries, Acta Materialia 55, 849–856 (2007)

    Article  Google Scholar 

  6. H. Guo, B. Lu, J. Luo: Response of surface mechanical properties to electrochemical dissolution determined by in situ nanoindentation technique, Electrochemistry Communications 8, 1092–1098 (2006)

    Article  Google Scholar 

  7. M. Oden, H. Ljungcrantz, L. Hultman: Characterization of the induced plastic zone in a single crystal TiN(001) film by nanoindentation and transmission electron microscopy, Journal of Materials Research 12, 2134–2142 (1997)

    Article  ADS  Google Scholar 

  8. H. Bei, E. P. George, J. L. Hay, G. M. Pharr: Influence of indenter tip geometry on elastic deformation during nanoindentation, Physical Review Letters 95, 1–4 (2005)

    Article  Google Scholar 

  9. M. Göken, M. Kempf, M. Bordenet, H. Vehoff: Nanomechanical characterizations of metals and thin films, Surface and Interface Analysis 27, 302–306 (1999)

    Article  Google Scholar 

  10. K. Durst, M. Göken, H. Vehoff: Finite element study for nanoindentation measurements on two-phase materials, Journal of Materials Research 19, 85–93 (2004)

    ADS  Google Scholar 

  11. M. Kempf, M. Göken, H. Vehoff: Nanohardness measurements for studying local mechanical properties of metals, Applied Physics A Materials Science & Processing 66, S843–S846 (1998)

    Article  ADS  Google Scholar 

  12. B. Yang, H. Vehoff: Grain size effects on the mechanical properties of nanonickel examined by nanoindentation, Materials Science and Engineering A 400–401, 467–470 (2005)

    Article  Google Scholar 

  13. R. J. Asaro, S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Materialia 53, 3369–3382 (2005) cited by (since 1996): 48

    Article  Google Scholar 

  14. H. Vehoff, D. Lemaire, K. Schüler, T. Waschkies, B. Yang: The effect of grain size on strain rate sensitivity and activation volume — from nano to ufg nickel, Int. J. Mat. Res. 98, 4 (2007)

    Google Scholar 

  15. H. Van Swygenhoven, A. Caro: Plastic behavior of nanophase metals studied by molecular dynamics, Phys. Rev. B 58, 11246–11251 (1998)

    Article  ADS  Google Scholar 

  16. E. Ma: Watching the nanograins roll, Science 305, 623–624 (2004)

    Article  Google Scholar 

  17. W. H. Johnson: On some remarkable change produced in iron and steel by the action of hydrogen and acids, Proceedings of the Royal Society of London 23, 168–179 (1875)

    Article  ADS  Google Scholar 

  18. H. Vehoff, H. K. Klameth: Hydrogen embrittlement and trapping at crack tips in Ni single crystals., Acta Metallurgica 33, 955–962 (1985) cited by (since 1996): 13

    Article  Google Scholar 

  19. D. G. Ulmer, C. J. Alstetter: Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations, Acta Metallurgica et Materialia 39, 1237 (1991)

    Article  Google Scholar 

  20. W. McInteer, A. W. Thompson, I. M. Bernstein: The effect of hydrogen on the slip character of nickel, Acta Metallurgica 28, 887 (1980)

    Article  Google Scholar 

  21. A. Pundt, R. Kirchheim: Hydrogen in metals: Microstructural aspects, Annual Review of Materials Research 36, 555–608 (2006)

    Article  ADS  Google Scholar 

  22. H. Vehoff: Hydrogen in Metals III (Springer Berlin/Heidelberg 1997)

    Book  Google Scholar 

  23. I. M. Robertson, H. K. Birnbaum: HVEM study of hydrogen effects on the deformation and fracture of nickel., Acta Metallurgica 34, 353–366 (1986) cited by (since 1996): 75

    Article  Google Scholar 

  24. G. M. Bond, I. M. Robertson, H. K. Birnbaum: On the determination of the hydrogen fugacity in an environmental cell tem facility., Scripta metallurgica 20, 653–658 (1986) cited By (since 1996): 14

    Article  Google Scholar 

  25. A. Barnoush, H. Vehoff: Electrochemical nanoindentation: A new approach to probe hydrogen/deformation interaction, Scripta Materialia 55, 195–198 (2006)

    Article  Google Scholar 

  26. A. Barnoush, H. Vehoff: In situ electrochemical nanoindentation of a nickel (111) single crystal: Hydrogen effect on pop-in behaviour, International Journal of Materials Research 97, 1224–1229 (2006)

    Google Scholar 

  27. H. Natter, R. Hempelmann: Tailor-made nanomaterials designed by electrochemical methods, Electrochimica Acta 49, 51–61 (2003)

    Article  Google Scholar 

  28. B. MacDougall, M. Cohen: Anodic oxidation of nickel in natural sulfate solution, J. Electrochem. Soc. 121, 1152 (1974)

    Article  Google Scholar 

  29. K. J. Kim, J. H. Yoon, M. H. Cho, H. Jang: Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Σ=5(210) grain boundary, Materials Letters 60, 3367–3372 (2006)

    Article  Google Scholar 

  30. K. Johnson: Contact mechanics (Cambridge University Press 2003)

    Google Scholar 

  31. J. P. Hirth, J. Lothe: Theory of dislocations (Wiley, New York 1981)

    Google Scholar 

  32. C. Kittel: Introduction to Solid State Physics, 4th edition ed. (John Wiley, New York 1971)

    Google Scholar 

  33. R. P. Reed, R. E. Schramm: Relationship between stacking-fault energy and x-ray measurements of stacking-fault probability and microstrain, J. Appl. Phys 45, 4705 (1974)

    Article  ADS  Google Scholar 

  34. M. Wen, S. Fukuyama, K. Yokogawa: Atomistic simulations of hydrogen effect on dissociation of screw dislocations in nickel, Scripta Materialia 52, 959–962 (2005)

    Article  Google Scholar 

  35. J. Chateau, D. Delafosse, T. Magnin: Numerical simulations of hydrogen-dislocation interactions in fcc stainless steels. Part I: hydrogen-dislocation interactions in bulk crystals, Acta Materialia 50, 1507–1522 (2002)

    Article  Google Scholar 

  36. H. Vehoff, W. Rothe: Gaseous hydrogen embrittlement in FeSi and Ni single crystals, Acta Metallurgica 31, 1781 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnoush, A., Yang, B., Vehoff, H. (2008). Effect of Hydrogen and Grain Boundaries on Dislocation Nucleation and Multiplication Examined with a NI-AFM. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74325-5_20

Download citation

Publish with us

Policies and ethics