Skip to main content
Log in

Dynamic Behavior of a Rare-Earth-Containing Mg Alloy, WE43B-T5, Plate with Comparison to Conventional Alloy, AM30-F

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dynamic behavior of Mg alloys is an area of interest for applications such as crash-sensitive automotive components and armor. The rare-earth element-containing alloy WE43B-T5 has performed well in ballistic testing, so the quasi-static (~10−3 1/s) and dynamic (~600–5000 1/s) mechanical behaviors of two Mg alloys, rolled WE43B-T5 and extruded AM30-F, were investigated using servohydraulic and Kolsky bar testing in uniaxial tension and compression. The yield stress was surprisingly isotropic for WE43B-T5 relative to conventional Mg alloys (including extruded AM30-F). The WE43B plate was textured; however, it was not the typical basal texture of hot-rolled Mg-Al alloys. The effect of strain rate on the yield strength of WE43B-T5 is small and the strain-hardening behavior is only mildly rate sensitive (m = 0.008). The combination of high strength (~300 MPa), moderate ductility (0.07–0.20), and low density yield a material with good specific energy absorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Unsworth, J.F. King, and S.L. Bradshaw, U.S. patent 4,401,621 (1983).

    Google Scholar 

  2. Magnesium Elektron, Elektron WE43, Datasheet: 467 (Manchester, England: Magnesium Elektron, n.d.).

  3. M. Turski, A. Paradowska, S.-Y. Zhang, D. Mortensen, H. Fjaer, J. Grandfield, B. Davis, and R. DeLorme, Metall. Mater. Trans. A 43A, 1547 (2012).

    Article  Google Scholar 

  4. K. Cho, T. Sano, K. Doherty, C. Yen, G. Gazonas, J. Montgomery, P. Moy, B. Davis, and R. DeLorme, Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles, Army Research Laboratory Report, ARL-RP-326, Accession Number: ADA499411 (Fort Belvoir, VA: DTIC Online, 2009).

  5. T. Mukai, K. Ishikawa, Y. Okanda, M. Mabuchi, K. Kubota, and K. Higashi, Light Weight Alloys for Aerospace Application III, ed. E.W. Lee, N.J. Kim, K.V. Jata, and W.E. Frazier (Warrendale, PA: TMS, 1995), pp. 483–492.

  6. T. Mukai, T. Mohri, M. Mabuchi, M. Nakamura, K. Ishikawa, and K. Higashi, Scripta Mater. 39, 1251 (1998).

    Article  Google Scholar 

  7. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Trans. JIM 42, 1177 (2001).

    Article  Google Scholar 

  8. T. Yokoyama, Strain 39, 167 (2001).

    Article  Google Scholar 

  9. T. Mukai, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Sci. Forum 419–422, 171 (2003).

    Article  Google Scholar 

  10. V. Livescu, Magnesium Tech. 2006, ed. A.A. Luo, N.R. Neelameggham, and R.S. Beals (Warrendale, PA: TMS, 2006), pp. 153–158.

    Google Scholar 

  11. C.W. Tan, Trans. Nonferrous Met. Soc. China 17, S347 (2007).

    Google Scholar 

  12. M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El Kadiri, and W.R. Whittington, Scripta Mater. 60, 182 (2009).

    Article  Google Scholar 

  13. B. Li, S. Joshi, K. Azevedo, E. Ma, and K.T. Ramesh, Mater. Sci. Eng. A 517, 24 (2009).

    Article  Google Scholar 

  14. I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Acta Mater. 58, 2988 (2010).

    Article  Google Scholar 

  15. S. Kurukuri, D.G. Tari, M.J. Worswick, R.K. Mishra, and J.T. Carter, Mg2012: Proc. 9th Inter. Conf. Magnesium Alloys and Their Applications, eds. W.J. Poole and K.U. Kainer (Vancouver, Canada: University of British Columbia, 2012), pp. 777–782.

  16. B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, and T. Mukai, Acta Mater. 60, 1818 (2012).

    Article  Google Scholar 

  17. A.A. Luo and A.K. Sachdev, Metall. Mater. Trans. A 38A, 1184 (2007).

    Article  Google Scholar 

  18. E.A. Ball and P.B. Prangnell, Scripta Metall. Mater. 31, 111 (1994).

    Article  Google Scholar 

  19. N. Stanford and M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008).

    Article  Google Scholar 

  20. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Acta Mater. 53, 3135 (2005).

    Article  Google Scholar 

  21. M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).

    Article  Google Scholar 

  22. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel, Scripta Mater. 48, 1003 (2003).

    Article  Google Scholar 

  23. M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  24. Y.B. Chun and C.H.J. Davies, Mater. Sci. Eng. A 528, 5713 (2011).

    Article  Google Scholar 

  25. H. Conrad, L. Hays, G. Schoeck, and H. Wiedersich, Acta Metall. 9, 367 (1961).

    Article  Google Scholar 

  26. P. Ward Flynn, J. Mote, and J.E. Dorn, Trans. AIME 221, 1148 (1961).

    Google Scholar 

  27. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351 (1969).

    Article  Google Scholar 

  28. A. Couret and D. Caillard, Acta Metall. 33, 1447 (1985).

    Article  Google Scholar 

  29. B. Raeisinia, S.R. Agnew, and A. Akhtar, Metall. Mater. Trans. A 42A, 1418 (2011).

    Article  Google Scholar 

  30. J.F. Stohr and J.P. Poirier, Philos. Mag. 25, 1313 (1972).

    Article  Google Scholar 

  31. T. Obara, H. Yoshinaga, and S. Morozumi, Acta Metall. 21, 845 (1973).

    Article  Google Scholar 

  32. T. Nogaret, W.A. Curtin, J.A. Yasi, L.G. Hector Jr, and D.R. Trinkle, Acta Mater. 58, 4332 (2010).

    Article  Google Scholar 

  33. S.R. Agnew, D.W. Brown, and C.N. Tomé, Acta Mater. 54, 4841 (2006).

    Article  Google Scholar 

  34. O. Muransky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Šittner, Mater. Sci. Eng. A 496, 14 (2008).

    Article  Google Scholar 

  35. J. Hamilton, Microstructural Characteristics of High Rate Plastic Deformation in Elektron™ WE43 Magnesium Alloy, Army Research Laboratory Report, ARL-RP-363, Accession Number: ADA562514 (Fort Belvoir, VA: DTIC Online, 2012).

  36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, S.C. Vogel, and M.F. Horstemeyer, Philos. Mag. 93, 4311 (2013).

    Google Scholar 

  37. L.G. Schultz, J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  38. R. Hielscher and H. Schaeben, J. Appl. Cryst. 41, 1024 (2008).

    Article  Google Scholar 

  39. H.-R. Wenk, L. Lutterotti, and S.C. Vogel, Powder Diffr. 25, 283 (2010).

    Article  Google Scholar 

  40. B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie Jr, Appl. Mech. Rev. 57, 223 (2004).

    Article  Google Scholar 

  41. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2006).

    Article  Google Scholar 

  42. J.D. Robson, Metall. Mater. Trans. A. (2013). doi:10.1007/s11661-013-1950-1.

  43. S.H. Park, S.G. Hong, W. Bang, and C.S. Lee, Mater. Sci. Eng. A 527, 417 (2010).

    Article  Google Scholar 

  44. L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, and P.K. Liaw, Mater. Sci. Eng. A 527, 7057 (2010).

    Article  Google Scholar 

  45. S.G. Hong, S.H. Park, and C.S. Lee, J. Mater. Res. 25, 966 (2010).

    Article  Google Scholar 

  46. S.G. Hong, S.H. Park, and C.S. Lee, Scripta Mater. 64, 145 (2011).

    Article  Google Scholar 

  47. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Int. J. Plastic. 27, 688 (2011).

    Article  MATH  Google Scholar 

  48. J.F. Nie, Scripta Mater. 48, 1009 (2003).

    Article  Google Scholar 

  49. J.D. Robson, Mg2012: Proc. 9th Inter. Conf. Magnesium Alloys and Their Applications, ed. W.J. Poole and K.U. Kainer (Vancouver, Canada: University of British Columbia, 2012), pp. 63–68.

  50. S.R. Agnew, R.P. Mulay, F.J. Polesak III, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen, Acta Mater. 61, 3769 (2013).

    Article  Google Scholar 

  51. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez, Acta Mater. 59, 429 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

S.R.A. would like to thank McMaster University for sponsoring a visiting faculty appointment during which this article was written. The research at U.V.A. and M.S.U. was sponsored by the United States Army Research Office under contract number W911NF-12-1-0455 monitored by Dr. Suveen Mathaudhu. The research at MENA and JHU was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement No. W911NF-07-2-0073 with technical monitor, Kyu Cho. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Agnew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnew, S., Whittington, W., Oppedal, A. et al. Dynamic Behavior of a Rare-Earth-Containing Mg Alloy, WE43B-T5, Plate with Comparison to Conventional Alloy, AM30-F. JOM 66, 277–290 (2014). https://doi.org/10.1007/s11837-013-0830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0830-x

Keywords

Navigation