Skip to main content
Log in

Incorporation of Solid Solution Alloying Effects into Polycrystal Modeling of Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Discrepancies between the strength of slip systems determined directly from Mg single-crystal studies and those estimated from polycrystal simulations of Mg alloys are known to exist. These discrepancies have prohibited the direct use of single-crystal data within polycrystal models, ultimately leading to an increase in the number of adjustable parameters in such models and, accordingly, difficulties in extending such models to Mg alloys of industrial and technological relevance. In this work, a framework is introduced that eliminates these differences by accounting for continuum mechanical and physical metallurgical effects. With respect to the former, it is shown that a stiffer self-consistent grain–matrix interaction scheme than that commonly used better captures the behavior of textured Mg alloy AZ31. With respect to the latter, the impact of grain size and solute concentration on individual deformation modes is considered. Because of a lack of sufficient experimental data describing all possible deformation modes, only basal slip and prismatic slip are treated quantitatively. Of particular note is the strong solid solution strengthening of the basal slip mode and the moderate solute softening of the prismatic slip mode by the common alloying elements Al and Zn. An empirical model describing the Zn solute and temperature dependence of thermally activated prismatic slip is presented. The presented methodology provides a first attempt to eliminate the need for trial-and-error–based approach for determining the slip system flow stress parameters of polycrystal models. Areas where advances in the presented analysis may be attained are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.S. Roberts 1960 Magnesium and Its Alloys, Wiley, New York, NY.

    Google Scholar 

  2. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48, pp. 1003-08.

    Article  CAS  Google Scholar 

  3. S.R. Agnew, D.W. Brown, and C.N. Tomé: Acta Mater., 2006, vol. 54, pp. 4841-52.

    Article  CAS  Google Scholar 

  4. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew: Acta Mater., 2008, vol. 56, pp. 2456-68.

    Article  CAS  Google Scholar 

  5. O. Muránsky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Šittner: Mater. Sci. Eng. A, 2008, vol. 496, pp. 14-24.

    Article  Google Scholar 

  6. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462, pp. 29-36.

    Article  Google Scholar 

  7. C.J. Neil and S.R. Agnew: Int. J. Plast., 2009, vol. 25, pp. 379-98.

    Article  Google Scholar 

  8. T. Ebeling, C. Hartig, and R. Bormann: Magnesium Technology, E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, and M.O. Pekguleryuz, eds., TMS, San Francisco, CA, 2009, pp. 531–35.

  9. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21, pp. 1161-93.

    Article  CAS  Google Scholar 

  10. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids Struct., 2010, vol. 47, pp. 2905–17.

    Article  CAS  Google Scholar 

  11. A. Staroselsky and L. Anand: Int. J. Plast., 2003, vol. 19, pp. 1843-64.

    Article  CAS  Google Scholar 

  12. S. Graff, W. Brocks, and D. Steglich: Int. J. Plast., 2007, vol. 23, pp. 1957-78.

    Article  CAS  Google Scholar 

  13. A. Styczynski, C. Hartig, J. Bohlen, and D. Letzig: Scripta Mater., 2004, vol. 50, pp. 943-47.

    Article  CAS  Google Scholar 

  14. M.R. Barnett, Z. Keshavarz, and X. Ma: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2283-93.

    Article  CAS  Google Scholar 

  15. C.N. Tomé and G.R. Canova: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, U.F. Kocks, C.N. Tomé, H.-R. Wenk, eds., Cambridge University Press, Cambridge, MA, 1998, pp. 466–511.

  16. H. Conrad and W.D. Robertson: Trans. AIME, 1957, vol. 209, pp. 503-12.

    Google Scholar 

  17. P.W. Bakarian and C.H. Mathewson: Trans. AIME, 1943, vol. 152, pp. 226-54.

    Google Scholar 

  18. E.C. Burke and W.R. Hibbard: Trans. AIME, 1952, vol. 194, pp. 295-303.

    Google Scholar 

  19. W.F. Sheely and R.R. Nash: Trans. TMS-AIME, 1960, vol. 218, pp. 416-23.

    CAS  Google Scholar 

  20. A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1339-49.

    Article  CAS  Google Scholar 

  21. R.E. Reed-Hill and W.D. Robertson: Trans. AIME, 1957, vol. 209, pp. 496-502.

    Google Scholar 

  22. A. Akhtar and E. Teghtsoonian: Acta Metall., 1969, vol. 17, pp. 1351-56.

    Article  CAS  Google Scholar 

  23. A. Couret and D. Caillard: Acta Metall., 1985, vol. 33, pp. 1447-54.

    Article  CAS  Google Scholar 

  24. P. Ward Flynn, J. Mote, J.E. Dorn 1961 Trans. TMS-AIME, vol. 221, pp. 1148-54.

    Google Scholar 

  25. T. Obara, H. Yoshinaga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845-53.

    Article  CAS  Google Scholar 

  26. J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, pp. 1313-29.

    Article  CAS  Google Scholar 

  27. A. Akhtar and E. Teghtsoonian: Phil. Mag., 1972, vol. 25, pp. 897-916.

    Article  CAS  Google Scholar 

  28. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 5, pp. 14-21.

    Google Scholar 

  29. M.M. Avedesian: Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.

  30. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Upper Saddle River, NJ, 1984.

  31. G.J. Davies 1971 Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Wiley, New York, NY, p. 485.

    Google Scholar 

  32. P.B. Hirsch and J.S. Lally: Phil. Mag., 1965, vol. 12, pp. 595-648.

    Article  CAS  Google Scholar 

  33. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667-80.

    Article  Google Scholar 

  34. A. Jain, Ö. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Mater. Sci. Eng. A, 2008, vol. 486, pp. 545-55.

    Article  Google Scholar 

  35. R.A. Lebensohn and C.N. Tomé: Acta Mater., 1993, vol. 41, pp. 2611-24.

    Article  CAS  Google Scholar 

  36. R.A. Lebensohn, P.A. Turner, J.W. Signorelli, G.R. Canova, and C.N. Tomé: Model. Simul. Mater. Sc., 1998, vol. 6, pp. 447-65.

    Article  CAS  Google Scholar 

  37. A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983-94.

    Article  CAS  Google Scholar 

  38. R.J. Asaro: Adv. Appl. Mech., 1983, vol. 23, pp. 1-115.

    Article  Google Scholar 

  39. G.R. Canova and U.F. Kocks: 7th Int. Conf. on Textures of Materials. Netherlands: Society for Materials Science, C.M. Brakman, P. Jongenburger, and E.J. Mittemeijer, eds., 1984, pp. 573–79.

  40. R.J. Asaro and A. Needleman: Acta Metall., 1985, vol. 33, pp. 923-53.

    Article  CAS  Google Scholar 

  41. C.N. Tomé: Model. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 723-38.

    Article  Google Scholar 

  42. R. Masson, M. Bornert, P. Suquet, and A. Zaoui: J. Mech. Phys. Solid, 2000, vol. 48, pp. 1203-27.

    Article  CAS  Google Scholar 

  43. R.A. Lebensohn, C.N. Tomé, and P.J. Maudlin: J. Mech. Phys. Solid, 2004, vol. 52, pp. 249-78.

    Article  Google Scholar 

  44. C.N. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 1637-53.

    Article  Google Scholar 

  45. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, p. 747.

    CAS  Google Scholar 

  46. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, p. 25.

  47. R.L. Fleischer: The Strengthening of Metals, Ed. D. Peckner, Reinhold, New York, NY, 1964, pp. 93-140.

    Google Scholar 

  48. R. Labusch: Phys. Solid State, 1970, vol. 41, pp. 659-69.

    Article  Google Scholar 

  49. U.F. Kocks: 5th International Conference on the Strength of Metals and Alloys (ICSMA-5), P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon, Aachen, Germany, 1979, pp. 1661–80.

  50. A. Seeger: Dislocations and Mechanical Properties of Crystals, J.C. Fisher, W.G. Johnston, R. Thomson, and T. Vreeland, eds., Wiley, Lake Placid, NY, 1957, pp. 243–329.

  51. A.S. Argon 2008 Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, New York, NY.

    Google Scholar 

  52. U.F. Kocks, A.S. Argon, and M.F. Ashby: Prog. Mater. Sci., 1975, vol. 19, pp. 1-288.

    Article  Google Scholar 

  53. D. Caillard, J.L. Martin 2003 Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Press, Amsterdam, The Netherlands.

    Google Scholar 

  54. A. Couret, D. Caillard, W. Püschl, and G. Schoeck: Phil. Mag. A, 1991, vol. 63, pp. 1045-57.

    Article  Google Scholar 

  55. W. Püschl: Prog. Mater. Sci., 2002, vol. 47, pp. 415-61.

    Article  Google Scholar 

  56. G.I. Taylor: J. Jpn. Inst. Met., 1938, vol. 62, pp. 307-24.

    Google Scholar 

  57. J.F. Bishop and R. Hill: Phil. Mag., 1951, vol. 42, p. 1298.

    CAS  Google Scholar 

  58. P.R. Dawson and A.J. Beaudoin: Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, U.F. Kocks, C.N. Tomé, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, MA, 1998, pp. 512–31.

  59. J.D. Eshelby: Proc. Roy. Soc. A, 1957, vol. 241, pp. 376-96.

    Article  Google Scholar 

  60. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055-65.

    Article  CAS  Google Scholar 

  61. J.C.M. Li: Trans. TMS-AIME, 1963, vol. 227, p. 239.

    CAS  Google Scholar 

  62. H. Conrad: Acta Metall., 1963, vol. 11, p. 75.

    Article  Google Scholar 

  63. G.I. Taylor: Proc. Roy. Soc. A, 1934, vol. 145, p. 362.

    Article  CAS  Google Scholar 

  64. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63, pp. 737-40.

    Article  CAS  Google Scholar 

  65. J.A. Yasi, L.G. Hector Jr., and D.R. Trinkle 2010 Acta Mater., vol. 58, pp. 5704-13.

    Article  CAS  Google Scholar 

  66. H. Neuhäuser and C. Schwink: Material Science and Technology: A Comprehensive Treatment, vol. 6, R.W. Cahn, P. Hassen, and E.J. Kramer, eds., VCH, Weinheim, Germany, 1993, pp. 191–250.

  67. E. Pink and R.J. Arsenault: Prog. Mater. Sci., 1980, vol. 24, pp. 1-50.

    Article  Google Scholar 

  68. A. Ahmadieh, J. Mitchell, and J.E. Dorn: Trans. TMS-AIME, 1965, vol. 233, pp. 1130-38.

    CAS  Google Scholar 

  69. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 4, pp. 134-41.

    CAS  Google Scholar 

  70. A. Urakami: Ph.D. Dissertation, Northwestern University, Evanston, IL, 1970.

  71. A. Urakami and M.E. Fine: Scripta Metall., 1970, vol. 4, pp. 667-71.

    Article  Google Scholar 

  72. A. Urakami and M.E. Fine: First Int. Conf. on Mechanical Behavior of Materials, S. Taira and M. Kunugi, eds., Society of Materials Science, Kyoto, Japan, 1971, pp. 87–96.

  73. T.E. Mitchell and P.L. Raffo: Can. J. Phys., 1967, vol. 45, pp. 1047-62.

    CAS  Google Scholar 

  74. R.J. Arsenault: Acta Metall., 1960, vol. 17, pp. 1291-97.

    Google Scholar 

  75. A. Sato and M. Meshii: Acta Metall., 1973, vol. 21, pp. 753-68.

    Article  CAS  Google Scholar 

  76. D.R. Trinkle and C. Woodward: Science, 2005, vol. 310, pp. 1665-67.

    Article  CAS  Google Scholar 

  77. E. Meza-García, J. Bohlen, D. Letzig, and K.U. Kainer: Magnesium Technology 2007, R.S. Beals, A.A. Luo, N.R. Neelameggham, and M.O. Pekguleryuz, eds., TMS, Orlando, FL, pp. 531–35.

  78. S. Ando and H. Tonda: Trans. JIM, 2000, vol. 41, pp. 1188-91.

    CAS  Google Scholar 

  79. J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009-15.

    Article  CAS  Google Scholar 

  80. G. Monnet, B. Devincre, and L.P. Kubin: Acta Mater., 2004, vol. 52, pp. 4317-28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the United States Automotive Materials Partnership, as part of the Mg-Integrated Computational Materials Engineering (ICME) project, and the Los Alamos National Laboratory with funds from the U.S. Department of Energy National Energy Technology Laboratory under Award Number DE-FC26-02OR22910 and the Office of Basic Energy Sciences, Project FWP 06SCPE401, respectively. This report was prepared as an account of work sponsored by an agency of the U.S. government. Neither the U.S. government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Raeisinia.

Additional information

Manuscript submitted: February 1, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeisinia, B., Agnew, S.R. & Akhtar, A. Incorporation of Solid Solution Alloying Effects into Polycrystal Modeling of Mg Alloys. Metall Mater Trans A 42, 1418–1430 (2011). https://doi.org/10.1007/s11661-010-0527-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0527-5

Keywords

Navigation