Skip to main content

Advertisement

Log in

High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called “dual-atmosphere” exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600–800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U.S. Department of Energy, Fuel Cell Handbook, 7th ed. (Washington, DC: U.S. Department of Energy, 2004).

    Google Scholar 

  2. S.C. Singhal and K. Kendall, High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Amsterdam, the Netherlands: Elsevier Science, 2004).

    Google Scholar 

  3. J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed. (Chichester, UK: Wiley and Sons Ltd., 2003).

    Google Scholar 

  4. N.Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells (New York: Elsevier, 1995).

    Google Scholar 

  5. J. Nowotny, eds., Diffusion in Solids and High-Temperature Oxidation of Metals (Enfield, NH: Trans Tech Publications, Ltd., 1992).

    Google Scholar 

  6. N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals, 2nd ed. (Cambridge, UK: Cambridge University Press, 2006).

    Book  Google Scholar 

  7. T. Brylewski, J. Dabek, and K. Przybylski, J. Therm. Anal. Calorim. 77, 207 (2004).

    Article  Google Scholar 

  8. Z. Yang, J. Hardy, M. Walker, G. Xia, S. Simner, and J. Stevenson, J. Electrochem. Soc. 151, A1825 (2004).

    Article  Google Scholar 

  9. P. Kofstad and R. Bredesen, Solid State Ionics 52, 69 (1992).

    Article  Google Scholar 

  10. K. Honegger, A. Plas, R. Diethelm, and W. Glatz, Solid Oxide Fuel Cells (SOFC), Vol. VII, ed. H. Yokokawa and S.C. Singhal (Pennington NJ: The Electrochemical Society, 2001), p. 803.PV2001-16.

    Google Scholar 

  11. J.P. Abellan, V. Shemet, F. Tietz, L. Singheiser, W.J. Quadakkers, and A. Gil, Solid Oxide Fuel Cells (SOFC), Vol. VII, ed. H. Yokokawa and S.C. Singhal (Pennington NJ: The Electrochemical Society, 2001), p. 811.PV2001-16.

    Google Scholar 

  12. T. Horita, Y. Xiong, K. Yamaji, N. Sakai, and H. Yokokawa, J. Electrochem. Soc. 150, A243 (2003).

    Article  Google Scholar 

  13. W.Z. Zhu and S.C. Deevi, Mater. Sci. Eng. A 348, 227 (2003).

    Article  Google Scholar 

  14. W.J. Quadakkers, T. Malkow, J. Piron-Abellan, U. Flesch, V. Shemet, and L. Singheiser, Proceedings of the 4th European SOFC Forum, vol. 2 (Oberrohrdorf, Switzerland: European SOFC Forum, 2000), p. 827.

  15. K. Huang, P.Y. Hou, and J.B. Goodenough, Solid State Ionics 129, 237 (2000).

    Article  Google Scholar 

  16. K. Honegger, A. Plas, R. Diethelm, and W. Glatz, Solid Oxide Fuel Cells VII, ed. S.C. Singhal and H. Yokokawa (Pennington, NJ: The Electrochemical Society Proceedings Series, 2001), p. 803.PV 2001-16.

    Google Scholar 

  17. S. Linderoth, P.V. Hendriksen, and M. Mogensen, J. Mater. Sci. 31, 5077 (1996).

    Article  Google Scholar 

  18. S.P.S. Badwal, R. Deller, K. Foger, Y. Ramprakash, and J.P. Zhang, Solid State Ionics 99, 297 (1997).

    Article  Google Scholar 

  19. H.P. Buchkremer, U. Diekmann, L.G.J. de Haart, H. Kabs, D. Stover, and I.C. Vinke, Proceedings of the 3rd European SOFC Forum, Vol. 1, ed. P. Stevens (Oberrohrdorf, Switzerland: European Solid Oxide Fuel Cell Forum, 1998), p. 143.

    Google Scholar 

  20. Y. Matsuzaki and I. Yasuda, Solid State Ionics 132, 271 (2000).

    Article  Google Scholar 

  21. J.W. Stevenson, Z.G. Yang, G.G. Xia, G.D. Maupin, X.S. Li, and P. Singh, “SOFC Interconnects and Coatings” (Paper presented at 7th Annual SECA Workshop, Philadelphia, PA, 2006).

  22. J. Wu and X. Liu, J. Mater. Sci. Technol. 26, 293 (2010).

    Article  Google Scholar 

  23. J. Fergus, Mater. Sci. Eng. A 397, 271 (2005).

    Article  Google Scholar 

  24. J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, and H. Chen, Int. J. Hydrogen Energy 33, 1392 (2008).

    Article  Google Scholar 

  25. Z.G. Yang, M.S. Walker, P. Singh, J.W. Stevenson, and T. Norby, J. Electrochem. Soc. 151, B669 (2004).

    Article  Google Scholar 

  26. Z.G. Yang, M.S. Walker, P. Singh, J.W. Stevenson, and T. Norby, Electrochem. Solid-State Lett. 6, B35 (2003).

    Article  Google Scholar 

  27. Z.G. Yang, G.G. Xia, M.S. Walker, C.M. Wang, J.W. Stevenson, and P. Singh, Int. J. Hydrogen Energy 32, 3770 (2007).

    Article  Google Scholar 

  28. K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Mater. High Temp. 18, 51 (2001).

    Article  Google Scholar 

  29. G.R. Holcomb, M. Ziomek-Moroz, S.D. Cramer, B.S. Covino Jr., and S.J. Bullard, J. Mater. Eng. Perform. 15, 404 (2006).

    Article  Google Scholar 

  30. M. Ziomek-Moroz, S. Cramer, G.R. Holcomb, B.S. Covino Jr, S. Matthes, S. Bullard, J. Dunning, D. Alman, and P. Singh, Understanding the Corrosion Behavior of Chromia-Forming 316L Stainless Steel in a Dual Oxidizing-Reducing Environment Representative of SOFC Interconnect, DOE/ARC-2004-065w (Washington, DC: U.S. Department of Energy, 2003).

  31. T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M. Brito, and H. Yokokawa, J. Electrochem. Soc. 153, A2007 (2006).

    Article  Google Scholar 

  32. A. Werner, B. Skilbred, and R. Haugsrud, Int. J. Hydrogen Energy 37, 8095 (2012).

    Article  Google Scholar 

  33. Y. Zhao and J.W. Fergus, J. Electrochem. Soc. 159, C109 (2012).

    Article  Google Scholar 

  34. R. Amendola, P.E. Gannon, B. Ellingwood, and P. Piccardo, Surf. Coat. Technol. 206, 2173 (2012).

    Article  Google Scholar 

  35. K.O. Hoyt, P.E. Gannon, P. White, R. Tortop, B. Ellingwood, and H. Khoshuei, Int. J. Hydrogen Energy 37, 518 (2012).

    Article  Google Scholar 

  36. H. Kurokawa, Y. Oyama, K. Kawamura, and T. Maruyama, J. Electrochem. Soc. 151, A1264 (2004).

    Article  Google Scholar 

  37. H. Kurokawa, K. Kawamura, and T. Maruyama, Solid State Ionics 168, 13 (2004).

    Article  Google Scholar 

  38. J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, and W.J. Quadakkers, J. Power Sources 178, 163 (2008).

    Article  Google Scholar 

  39. T. Norby, J. Phys. IV C9, 99 (1993).

    Google Scholar 

  40. P. Kofstad, Oxid. Met. 44, 3 (1995).

    Article  Google Scholar 

  41. B. Tveten, G. Hultquist, and T. Norby, Oxid. Met. 51, 221 (1999).

    Article  Google Scholar 

  42. T. Norby, Adv. Ceram. 23, 107 (1987).

    Google Scholar 

  43. M.B. Pomfret, J.C. Owrutsky, and R.A. Walker, J. Phys. Chem. Lett. B 110, 17305 (2006).

    Google Scholar 

  44. V.A.C. Hannapel, P. Batfalsky, S.M. Gross, L.G.J. de Haart, J. Malzbender, N.H. Menxler, V. Shemet, R.W. Steinbrech, and I.C. Vinke, J. Fuel Cell Sci. Technol. 4, 11 (2007).

    Article  Google Scholar 

  45. R. Amendola, P.E. Gannon, S.W. Sofie, and A.J. Weisenstein, J. Electrochem. Soc. 159, C476 (2012).

    Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by NASA-EPSCoR Grant #NNX09AP73A. Special thanks are given to the staff at Montana State University’s Image and Chemical Analysis Laboratory (ICAL) for assistance with the SEM/EDX analyses. Additional thanks to Jude Eziashi, Michael McCambridge, and McLain Leonard for assistance with experiments and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gannon, P., Amendola, R. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects. JOM 64, 1470–1476 (2012). https://doi.org/10.1007/s11837-012-0473-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0473-3

Keywords

Navigation