Skip to main content
Log in

Materials applications of photoelectron emission microscopy

  • Overview
  • Characterization of Next-Generation Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Photoelectron emission microscopy (PEEM) is a versatile technique that can image a variety of materials including metals, semiconductors and even insulators. Under favorable conditions the most advanced aberration corrected instruments have a spatial resolution approaching 2 nm. Although PEEM cannot compete with transmission or scanning electron microscopies for ultimate resolution, the technique is much gentler and has the unique advantage of imaging structure as well as electronic and magnetic states on the nanoscale. Since the image contrast is derived from spatial variations in electron photoemission intensity, PEEM is ideal for interrogating both static and dynamic electronic properties of complex nanostructured materials. Here, we review the key principles and contrast mechanisms of PEEM and briefly summarize materials applications of PEEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Margaritondo, J. Electr. Spectr. Relat. Phenom., 178–179 (2010), pp. 273–291.

    Article  Google Scholar 

  2. A. Locatelli and E. Bauer, J. Phys.: Condens. Matter, 20 (2008), pp. 1–22 (CID 093002).

    Article  Google Scholar 

  3. O. Schmidt, M Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schonhense, and M. Aeschlimann, Appl. Phys. B, 74 (2002), pp. 223–227.

    Article  CAS  Google Scholar 

  4. R. Konenkamp, R.C. Word, G.F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, Ultramicroscopy, 110 (2010), pp. 899–902.

    Article  CAS  Google Scholar 

  5. T. Koshikawa, H. Shimizu, R. Amakawa, T. Ikuta, T. Yasue, and E. Bauer, J. Phys.: Condens. Matter, 17 (2005), pp. S1371–S1380.

    Article  CAS  Google Scholar 

  6. J. Feng, E. Forest, A.A. MacDowell, M. Marcus, H. Padmore, S. Raoux, D. Robin, A. Scholl, R. Schlueter, P. Schmid, J. Stohr, W. Wan, D.H. Wei, and Y. Wu, J. Phys.: Condens. Matter, 17 (2005), pp. S1339–S1350.

    Article  CAS  Google Scholar 

  7. V.W. Ballarotto, M. Breban, K. Siegrist, R.J. Phaneuf, and E.D. Williams, J. Vac. Sci. Technol. B. 20 (2002), pp. 2514–2518.

    Article  CAS  Google Scholar 

  8. H.H. Rotermund, Surf. Sci., 603 (2009), pp. 1662–1670.

    Article  CAS  Google Scholar 

  9. T. H. Kang, K. Ihm, C. C. Hwang, C. Jeon, K. J. Kim, J. Y. Kim, M. K. Lee, H. J. Shin, B. Kim, S. Chung, and C. Y. Park, Appl. Surf. Sci., 212–213 (2003) pp. 630–635.

    Article  Google Scholar 

  10. M. Hovorka, F. Mika, P. Mikulik, and L. Frank, Mater. Trans., 51 (2010), pp. 237–242.

    Article  CAS  Google Scholar 

  11. G.H. Fecher, O. Schmidt, Y. Hwu, and G. Schönhense, J. Electr. Spectr. Relat. Phenom., 126 (2002), pp. 77–87.

    Article  CAS  Google Scholar 

  12. F. Schedin, L. Leung, C.A. Muryn, E.W. Hill, A. Scholl, and G. Thornton, J. Appl. Phys., 95 (2004), pp. 7450–7452.

    Article  CAS  Google Scholar 

  13. PEEM research performed at the Advanced Light Source of the Lawrence Berkley National Laboratory, http://xraysweb.lbl.gov/peem2/PEEM2-02.html.

  14. T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, and C.T. Chan, Phys. Rev. B, 68 (2003), pp. 1–6 (CID 195408).

    Article  Google Scholar 

  15. W.C. Yang, B.J. Rodriquez, A. Gruverman, and R.J. Nemanich, J. Phys.: Condens. Matter, 17 (2005), pp. S1415–S1426.

    Article  CAS  Google Scholar 

  16. M. Cai, S.C. Langford, J.T. Dickinson, G. Xiong, T.C. Droubay, A.G. Joly, K.M. Beck, and W.P. Hess, J. Nucl. Mater., 361 (2007), pp. 306–312.

    Article  CAS  Google Scholar 

  17. W. Wei, S.L. Parker, Y.M. Sun, J.M. White, G. Xiong, A.G. Joly, K.M. Beck, and W.P. Hess, Appl. Phys. Lett, 90, (2007), pp. 1–3 (CID 111906).

    Google Scholar 

  18. M. Damayanti, T. Sritharan, S.G. Mhaisalkar and Z.H. Gan, Appl. Phys. Lett., 88 (2006), p. 044101.

    Article  Google Scholar 

  19. T.B. Massalski, Binary Alloy Phase Diagrams, ed. T.B. Massalski and H. Okamoto (Materials Park, OH: ASM International, 1990), p. 1467.

    Google Scholar 

  20. O. Chyan, T.N. Arunagiri, and T. Panuswamy, J. Electrochem. Soc., 150 (2003), pp. C347–C350.

    Article  CAS  Google Scholar 

  21. T.N. Arunagiri, Y. Zhang, O. Chyan, M.J. Kim, and T.Q. Hurd, J. Electrochem. Soc., 152 (2005), pp. G808–G812.

    Article  Google Scholar 

  22. NIST Standard Reference Database 71, (NIST: Gaithersburg, MD), www.nist.gov/ts/msd/srd/nist71.cfm.

  23. A. Bottcher, B. Krenzer, H. Conrad and H. Niehus, Surf. Sci., 504 (2002), pp. 42–58.

    Article  CAS  Google Scholar 

  24. H.B. Michaelson, J. App. Phys., 48 (1977), pp. 4729–4733.

    Article  CAS  Google Scholar 

  25. C.B. Duke, W.R. Salaneck, T.J. Fabish, J.J. Ritsko, H.R. Thomas, and A. Paton, Phys. Rev. B, 18 (1978), pp. 5717–5739.

    Article  CAS  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics (New York: John Wiley and Sons, Inc., 1996), p. 562.

    Google Scholar 

  27. G. Lilienkamp, F. Lindla, C. Senft, and W. Daum, Surf. Sci., 602 (2008), pp. 2658–2665.

    Article  CAS  Google Scholar 

  28. G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, and W.P. Hess, Adv. Funct. Mater., 17, (2007), pp. 2133–2138.

    Article  CAS  Google Scholar 

  29. D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, J. Nanomater. (2008), pp. 1–11 (CID 249514).

  30. A. Kubo, K. Onda, H. Petek, Z. Sun, Y.S. Jung, and H.K. Kim, Nano Lett., 5 (2005), pp. 1123–1127.

    Article  CAS  Google Scholar 

  31. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, Phys. Rev. Lett., 85 (2000), pp. 2921–2924.

    Article  CAS  Google Scholar 

  32. M. Bauer, C. Wiemann, J. Lange, D. Bayer, M. Rohmer, and M. Aeschlimann, Appl. Phys. A, 88 (2007), pp. 473–480.

    Article  CAS  Google Scholar 

  33. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Struber, and D.V. Voronine, Proc. Natl. Acad. Sci., 107 (2010), pp. 5329–5333.

    Article  CAS  Google Scholar 

  34. Y. Fang, N.H. Seong, and D.D. Dlott, Science, 321 (2008), pp. 388–392.

    Article  CAS  Google Scholar 

  35. K.A. Willets and R.P. Van Duyne, Annu. Rev. Phys. Chem., 58 (2007), pp. 267–297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, G., Shao, R., Peppernick, S.J. et al. Materials applications of photoelectron emission microscopy. JOM 62, 90–93 (2010). https://doi.org/10.1007/s11837-010-0189-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0189-1

Keywords

Navigation