Skip to main content

Advertisement

Log in

Cytochrome P450 et activation génétique — de la pharmacologie à l’élimination du cholestérol et à la régression de l’athérosclérose

Cytochrome P450 and gene activation — from pharmacology to cholesterol elimination and regression of atherosclerosis

  • Nutrigénomique
  • Published:
Bio tribune magazine

Résumé

Historique

Les lipoprotéines sont étroitement associées au processus vasculaire athéroscléreux. Des taux élevés de cholestérol lié à des lipoprotéines de haute densité (HDL-C) et d’apolipoprotéines AI (apo AI) dans le plasma indiquent une faible probabilité de maladie coronarienne (MC) de même qu’une longévité accrue, alors que des taux élevés en cholestérol lié à des lipoprotéines de basse densité (LDL-C) et en apo B indiquent un risque accru de MC et de décès. Des études associant l’activation génique et l’induction du cytochrome P450 à des taux plasmatiques élevés en apo AI et HDL-C et des taux plasmatiques diminués en LDL-C ont présenté une nouvelle approche potentielle pour prévenir et traiter la maladie athéroscléreuse.

Objectif et méthodes

Cette revue a pour but de clarifier le röle des enzymes P450 et de l’activation génique sur l’homéostasie du cholestérol, le processus vasculaire athéroscléreux, la prévention et la régression de l’athérosclérose ainsi que l’expression de la maladie athéroscléreuse, en particulier la MC, la plus importante cause de décès dans le monde.

Résultats

Les enzymes P450 maintiennent l’homéostasie du cholestérol cellulaire. Elles répondent à l’accumulation de cholestérol en augmentant la production d’hydroxycholestérols (oxystérols) et en activant les mécanismes d’élimination du cholestérol. Les enzymes CYP7A1, CYP27A1, CYP46A1 et CYP3A4 génèrent d’importants oxystérols qui passent dans la circulation. Les oxystérols activent — via des récepteurs nucléaires — l’ATP binding cassette (ABC) A1 et d’autres gènes, entrainant l’élimination de l’excédant de cholestérol et protégeant les artères de l’athérosclérose. Plusieurs médicaments et composés non pharmacologiques sont des ligands pour le récepteur X du foie (liver X receptor), le récepteur de pregnane X (pregnane X receptor) et d’autres récepteurs, ils activent les P450 et d’autres gènes impliqués dans l’élimination du cholestérol, préviennent ou font régresser l’athérosclérose et réduisent les accidents cardiovasculaires.

Conclusions

Les enzymes P450 sont essentielles au maintien physiologique de l’équilibre du cholestérol. Elles activent les mécanismes qui éliminent l’excès de cholestérol et neutralisent le processus athéroscléreux. Plusieurs médicaments et composés non pharmacologiques activent les P450 et d’autres gènes, empêchent ou font régresser l’athérosclérose et réduisent l’apparition de MC fatales ou non fatales ainsi que l’apparition d’autres maladies athéroscléreuses.

Abstract

Background

Lipoproteins are closely associated with the atherosclerotic vascular process. Elevated levels of highdensity lipoprotein cholesterol (HDL-C) and apolipoprotein AI (apo AI) in plasma indicate a low probability of coronary heart disease (CHD) together with enhanced longevity, and elevated levels of low-density lipoproteincholesterol (LDL-C) and apo B indicate an increased risk of CHD and death. Studies linking gene activation and the induction of cytochrome P450 with elevated plasma levels of apo AI and HDL-C and lowered plasma levels of LDL-C presented a new potential approach to prevent and treat atherosclerotic disease.

Objective and methods

This is a review aimed at clarifying the effects of P450-enzymes and gene activation on cholesterol homeostasis, the atherosclerotic vascular process, prevention and regression of atherosclerosis and the manifestation of atherosclerotic disease, particularly CHD, the leading cause of death in the world.

Results

P450-enzymes maintain cellular cholesterol homeostasis. They respond to cholesterol accumulation by enhancing the generation of hydroxycholesterols (oxysterols) and activating cholesterol-eliminating mechanisms. The CYP7A1, CYP27A1, CYP46A1 and CYP3A4 enzymes generate major oxysterols that enter the circulation. The oxysterols activate — via nuclear receptors — ATP-binding cassette (ABC) A1 and other genes, leading to the elimination of excess cholesterol and protecting arteries from atherosclerosis. Several drugs and nonpharmacologic compounds are ligands for the liver X receptor, pregnane X receptor and other receptors, activate P450 and other genes involved in cholesterol elimination, prevent or regress atherosclerosis and reduce cardiovascular events.

Conclusions

P450-enzymes are essential in the physiological maintenance of cholesterol balance. They activate mechanisms which eliminate excess cholesterol and counteract the atherosclerotic process. Several drugs and nonpharmacologic compounds induce P450 and other genes, prevent or regress atherosclerosis and reduce the occurrence of non-fatal and fatal CHD and other atherosclerotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19: 317–366

    PubMed  CAS  Google Scholar 

  2. Remmer H (1967) Die Induktion arzneimittelabbauender Enzyme im endoplasmatischen Retikulum der Leberzelle durch Pharmaka. Dtsch Med Wochensch 92: 2001–2008

    Article  CAS  Google Scholar 

  3. Omura T, Sato R, Cooper DY, Rosenthal O, Estabrook RW (1965) Function of cytochrome P450 of microsomes. Fed Proc 24: 1181–1189

    PubMed  CAS  Google Scholar 

  4. Luoma PV, Pelkonen RO, Sotaniemi EA (1979) Plasma high-density lipoprotein cholesterol and hepatic drug metabolizing enzyme activity in man. Acta Physiol Scand Suppl 473: 71

    Google Scholar 

  5. Luoma PV, Sotaniemi EA, Pelkonen RO, Ehnholm C (1980) Plasma high density lipoprotein and liver microsomal enzyme activity in man. In: Pilli-Sihvola AS, Laaksovirta TH (eds) The Medical Research Council 1977–1979. The Academy of Finland; Helsinki, p 71

    Google Scholar 

  6. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High-density lipoprotein as a protective factor against coronary heart disease. Am J Med 62: 707–714

    Article  PubMed  CAS  Google Scholar 

  7. Miller NE, Miller GJ (Eds.) (1984) Clinical and metabolic aspects of high-density lipoproteins. Elsevier, Amsterdam New York Oxford

    Google Scholar 

  8. Luoma PV, Sotaniemi EA, Pelkonen RO (1983) Inverse relation of serum LDL cholesterol and the LDL/HDL cholesterol ratio to liver microsomal induction in man. Res Commun Chem Pathol Pharmacol 42: 173–176

    PubMed  CAS  Google Scholar 

  9. Luoma PV, Sotaniemi EA, Arranto AJ (1983) Serum LDL cholesterol and LDL/HDL cholesterol ratio and liver microsomal induction evaluated by antipyrine kinetics. Scan J Clin Lab Invest 43: 671–675

    Article  CAS  Google Scholar 

  10. Luoma PV (1997) Gene activation, apolipoprotein A-I/ high density lipoprotein, atherosclerosis prevention and longevity. Pharmacol Toxicol 81: 57–64

    Article  PubMed  CAS  Google Scholar 

  11. Luoma PV, Sotaniemi EA, Pelkonen RO, Myllylä W (1980) Plasma high density lipoprotein cholesterol and hepatic cytochrome P-450 concentrations in epileptics undergoing anticonvulsant treatment. Scand J Clin Lab Invest 40: 163–167

    Article  PubMed  CAS  Google Scholar 

  12. Lu AYH, West SB (1980) Multiplicity of mammalian micro somal cytochromes P450. Pharmacol Rev 31: 277–295

    Google Scholar 

  13. Nebert DW, Russell DW (2002) Clinical importance of the cytochromes P450. Lancet 360: 1155–1162

    Article  PubMed  CAS  Google Scholar 

  14. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383: 728–731

    Article  PubMed  CAS  Google Scholar 

  15. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, Sundseth SS, Winegard DA, Blanchard DE, Spencer TA, Willson TM (1997) Activation of the nuclear receptor LXR by hydroxycholesterols defines a new hormone response pathway. J Biol Chem 272: 3137–3140

    Article  PubMed  CAS  Google Scholar 

  16. Bonow RO, Smaha LA, Smith SC, Mensah GA, Lennfant C (2002) The international burden of cardiovascular disease: Responding to the emerging global epidemic. Circulation 106: 1602–1605

    Article  PubMed  Google Scholar 

  17. Luoma PV, Savolainen MJ, Sotaniemi EA, Pelkonen RO, Arranto AJ, Ehnholm (1983) Plasma high density lipoprotein and liver lipids and proteins in man. Relation to hepatic histology and microsomal enzyme induction. Acta Med Scand 214: 103–109

    PubMed  CAS  Google Scholar 

  18. Chao YU, Pickett CB, Yamin TT, Guo LS, Alberts A, Kroon PA (1985) Phenobarbital induces rat liver apoliprotein A-I mRNA. Mol Pharmacol 27: 394–398

    PubMed  CAS  Google Scholar 

  19. Malmendier C, Delcroic C (1985) Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis 55: 161–169

    Article  PubMed  CAS  Google Scholar 

  20. Tam SP (1991) Effects of gemfibrozil and ketoconazole on human apolipoprotein A-I and E levels in two hepatoma cell lines HepG2 and HepG3. Atherosclerosis 91: 51–61

    Article  PubMed  CAS  Google Scholar 

  21. Rubin EM, Krauss MR, Spangler EA, Verstuyft JG, Clift MS (1991) Inhibition of early atherogenesis in transgenic mice by human apoprotein A-I. Nature 353: 265–267

    Article  PubMed  CAS  Google Scholar 

  22. Gylling H, Vanhanen H, Miettinen TA (1993) Effects of ketoconazole on cholesterol precursors and low density lipoprotein kinetics in hypercholesterolemia. J Lipid Res 34: 59–67

    PubMed  CAS  Google Scholar 

  23. Guan J-Z, Tamasava N, Murakami H, Matsui J, Yamato K, Suda T (2003) Clofibrate,a peroxisome-proliferator, enhances reverse cholesterol transport through cytochrome P450 activation and hydroxycholesterol generation. Tohoku J Exp Med 201: 251–259

    Article  PubMed  CAS  Google Scholar 

  24. Schneider B, Gerdsen R, Plat J, Dullens S, Björkhem I, Dicsfalusy U Neuvonen P, Biber T, von Bergmann K, Lütjohann D (2007) Effects of high-dose itraconazole treatment on lipo-proteins in men. Int J Clin Pharmacol Ther 45: 377–384

    PubMed  CAS  Google Scholar 

  25. Cali JJ, Hsieh CL, Francke U, Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266: 7779–7783

    PubMed  CAS  Google Scholar 

  26. Pullinger CR, Eng C, Salen G, Shefer S, Barra AK, Erickson SK, Verhagen A, Rivera CR, Mulvihill SJ, Malloy MJ, Kane JP (2002) Human cholesterol 7α-hydroxylase [CYP7A1] deficiency has a hypercholesterolemic phenotype. J Clin Invest 110: 109–117

    PubMed  CAS  Google Scholar 

  27. Björkhem I, Diczfalusy U, Lütjohann D (1999) Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol 10: 161–165

    Article  PubMed  Google Scholar 

  28. Tontonoz P, Mangelsdorf DJ (2003) Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol 17: 985–993

    Article  PubMed  CAS  Google Scholar 

  29. Ory DS (2004) Nuclear receptor signalling in the control of cholesterol homeostasis: have the orphans found a home. Circ Res 95: 660–670

    Article  PubMed  CAS  Google Scholar 

  30. Björkhem I, Diczfalusy U (2002) Hydroxycholesterols — friends, foes or just fellow passangers. Arterioscler Thromb Vasc Biol 22: 734–742

    Article  PubMed  CAS  Google Scholar 

  31. Chiang JYL (2003) Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol 284: 349–356

    Google Scholar 

  32. Eggertsen G, Olin M, Andersson U, Ishida H, Kubota S, Hellman U, Okuda K-I, Björkhem I (1996) Molecular cloning and expression of rabbit sterol 12α-hydroxylase. J Biol Chem 271: 32269–32275

    Article  PubMed  CAS  Google Scholar 

  33. Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol loaded cells. J Biol Chem 276:38378–38387

    Article  PubMed  CAS  Google Scholar 

  34. Norlin M, Andersson U, Björkhem U, Wikvall K (2000) Oxysterol 7α-hydroxylase activity by cholesterol 7α-hydroxylase (CYP7A). J Biol Chem 275: 34046–34053

    Article  PubMed  CAS  Google Scholar 

  35. Björkhem I (2006) Crossing the barrier: hydroxycholesterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260: 493–508

    Article  PubMed  CAS  Google Scholar 

  36. Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Sattler W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse cholesterol transport at an in vitro blood-brain barrier constituted porcine brain capillary endothelial cells. J Biol Chem 277: 42781–2789

    Article  PubMed  CAS  Google Scholar 

  37. Gibbons GF (2002) The role of cytochrome P450 in the regulation of cholesterol biosynthesis. Lipids 37: 1163–1170

    Article  PubMed  CAS  Google Scholar 

  38. Saucier SE, Kandutsch AA, Gayen AK, Swahn DK, Spencer TA (1989) Hydroxycholesterol regulators of 3-hydroxy-3-methyl-glutaryl-CoA reductase in liver. Effect of dietary cholesterol. J Biol Chem 264:6863–6869

    PubMed  CAS  Google Scholar 

  39. Yan D, Olkkonen VM (2007) The OSBP-related proteins (ORP) — lipid sensors or transporters? Fut Lipidol 2: 85–94

    Article  CAS  Google Scholar 

  40. Liang Y, Jiang X-C, Liu R, Liang G, Beyer TP, Gao H, Ryan TP, Li SD, Eacho PI, Cao G (2004) Liver X receptors (LXRs) regulate apolipoprotein AIV—implications of the antiatherosclerotic effect of LXR agonists. Mol Endocrinol 18: 2000–2010

    Article  PubMed  CAS  Google Scholar 

  41. Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433: 397–412

    Article  PubMed  CAS  Google Scholar 

  42. Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA (1998) Human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 102: 1016–1023

    Article  PubMed  CAS  Google Scholar 

  43. El-Sankary W, Gibson GG, Aurton A, Plant N (2001) Use of a reporter gene assay to predict and rank the potency and efficacy of CYP3A4 inducers. Drug Me Dispos 29: 1499–1504

    CAS  Google Scholar 

  44. Sinz M, Kim S, Zhu Z, Chen T, Anthony M, Dickinson K, Rodrigues AD (2006) Evaluation of 170 xenobiotics as transactivators of human pregnane X receptor (hPXR) and correlation to known CYP3A4 drug interactions. Curr Drug Metab 7: 375–388

    Article  PubMed  CAS  Google Scholar 

  45. Bachmann K, Patel H, Batayneh Z, Slama J, White D, Posey J et al (2004) PXR and the regulation of apoA1 and HDL-cholesterol in rodents. Pharmacol Res 50: 237–246

    Article  PubMed  CAS  Google Scholar 

  46. Sonoda J, Chong LW, Downes M, Barish GD, Coulter S, Liddle C, Lee CH, Evans RM (2005) Pregnane receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc Natl Acad Sci 102: 2198–2203

    Article  PubMed  CAS  Google Scholar 

  47. Schuetz EG, Schuetz JD, Strom SC, Thompson MT, Fisher RA, Molowa DT, Li D, Guzelian PS (1993) Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology 18: 1254–1262

    Article  PubMed  CAS  Google Scholar 

  48. Kocarek T, Dahn MS, Cai H, Strom SC, Mercer-Haines NA (2002) Regulation of CYP2B6 and CYP3A expression by hydroxymethylglutaryl coenzyme A inhibitors in primary cultured human hepatocytes. Drug Metab Disp 30: 1400–1405

    Article  CAS  Google Scholar 

  49. Bertrand-Thiebault C, Masson C, Siest G, Batt AM, Visvikis-Siest S (2007) Effect of MHGCoA reductase inhibitors on cytochrome P450 expression in endothelial cell line. J Cardiovasc Pharmacol 49: 306–315

    Article  PubMed  CAS  Google Scholar 

  50. Li T, Chen W Chiang JYL (2007) PXR induces CYP27A1 and regulates metabolism in the intestine. J Lipid Res 48: 373–384

    Article  PubMed  CAS  Google Scholar 

  51. Chawla A, Boisvert W, Lee C-H, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7: 161–171

    Article  PubMed  CAS  Google Scholar 

  52. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPARα and PPARγ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7: 53–58

    Article  PubMed  CAS  Google Scholar 

  53. Linsel-Nitschke P, Tall AR (2005) HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev 4: 193–205

    CAS  Google Scholar 

  54. Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Jouce C (2004) Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol 24: 1755–1760

    Article  PubMed  CAS  Google Scholar 

  55. Brunham LR, Kruit KJ, Iqbal J, Fievet C, Timmins JM, Pape T et al (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest 116: 1052–1062

    Article  PubMed  CAS  Google Scholar 

  56. Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ (2000) Regulation of absorption of ABCA1-mediated efflux of cholesterol by RXR heterodimers. Science 289: 1524–1529

    Article  PubMed  CAS  Google Scholar 

  57. Oram JF (2002) Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. Trends Mol Med 8: 168–173

    Article  PubMed  CAS  Google Scholar 

  58. Klucken J, Büchler C, Orsó E, Kaminski WE, Porsch-Özcürümez M, Liebisch G, Kapinnsky M, Diederich W, Drobnik W, Dean M, Alllikmets R, Schmitz G (2000) ABCG1 [ABC8], the human homolog of the drosophila white gene, is regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 97: 817–822

    Article  PubMed  CAS  Google Scholar 

  59. Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110: 671–680

    PubMed  CAS  Google Scholar 

  60. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovicch P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290: 1771–1553

    Article  PubMed  CAS  Google Scholar 

  61. Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, Najib-Fruchart J, Glineur C, Staels B (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apo A-I. J Clin Invest 107: 1423–1432

    Article  PubMed  CAS  Google Scholar 

  62. Fan P, Zhang B, Kuroki S, Saku K (2004) Pitavastatin, a potent hydroxymethylglutaryl Coenzyme A reductase inhibitor, increases 7α-hydroxylase gene expression in HepG2 cells. Circ J 68: 1061–1066

    Article  PubMed  CAS  Google Scholar 

  63. Argmann CA, Edwards JY, Sawyez CG, O’Neil CH, Hegele RA, Pickering JG, Huff MW (2005) Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition. J Biol Chem 280: 22212–22221

    Article  PubMed  CAS  Google Scholar 

  64. Maejima T, Yamazaki H, Aoki T, Tamaki T Sato F, Kitahara M, Saito Y (2004) Effect of pitavastatin on apolipoprotein A-I production in HepG2 cell. Biochem Biophys Res Commun 324: 835–839

    Article  PubMed  CAS  Google Scholar 

  65. Ando H, Tsuruoka S, Yamamoto H, Takamura T, Kaneko S, Fujimura A (2004) Effect of pravastatin on ATP-binding cassette transporter A1. J Pharmacol Exper Ther 311: 420–425

    Article  CAS  Google Scholar 

  66. Gatica A, Aguilera MC, Contador D, Loyola G, Pinto CO, Amigo L, Tichauer JE, Zanlungo S, Bronfman M (2007) P450 CYP2C epoxynase and CYP4A ω-hydroxylase mediate cipro-fibrateinduced PPARα-dependent peroxisomal proliferation. J Lipid Res 48:924–934

    Article  PubMed  CAS  Google Scholar 

  67. Prueksaritanont T, Richards KM, Qui Y, Strong-Basalyga K, Miller A, Li C, Eisenhandler R, Carlini EJ (2005) Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Pharmaceut Res 22: 71–78

    Article  CAS  Google Scholar 

  68. Shepherd J, Packard CJ, Bicker S, Lawrie TD, Morgan HG (1980) Cholestyramine promotes receptor-mediated low-density-lipoprotein catabolism. New Engl J Med 302: 1219–1222

    PubMed  CAS  Google Scholar 

  69. Shepherd J (1979) The effect of cholestyramine on high density lipoprotein metabolism. Atherosclerosis 33: 433–444

    Article  PubMed  CAS  Google Scholar 

  70. Guyton JR (2007) Niacin in cardiovascular prevention: mechanisms, efficacy and safety. Curr Opin Lipidol 18: 415–420

    Article  CAS  Google Scholar 

  71. Bodin K, Bretillon L, Aden Y, Bertilsson L, Broome U, Einarsson C, Diczfalusy U (2001) Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans. J Biol Chem 276: 38685–38689

    Article  PubMed  CAS  Google Scholar 

  72. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Wilson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor PPARγ. J Biol Chem 270: 12953–12956

    Article  PubMed  CAS  Google Scholar 

  73. Szanto A, Benko S, Szatmari I, Balint LB, Furtos I, Rνhl R, Molnar S, Csiba L, Garuti R, Calandra S, Laersson H, Diczfalusy U, Nagy L (2004) Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferator-activated receptor, and liver X receptor signalling in macrophages. Mol Cell Biol 24: 8154–8166

    Article  PubMed  CAS  Google Scholar 

  74. Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ (2005) Expression and regulation of sterol 27-hydroxylase [CYP27A1] in human macrophages: a role for RXR and PPARγ ligands. Biochem J 385: 823–830

    Article  PubMed  CAS  Google Scholar 

  75. Myers CD, Kashyap ML (2005) Pharmacological augmentation of high-density lipoproteins: mechanisms of currently available and emerging therapies. Curr Opin Cardiol 20: 307–312

    Google Scholar 

  76. Lieber CS (1984) To drink (moderately) or not to drink? New Engl J Med 310: 846–848

    Article  PubMed  CAS  Google Scholar 

  77. Malmendier CL, Delcroix C (1985) Effect of alcohol intake on high and low density lipoprotein metabolism in healthy volunteers, Clin Chim Acta 152: 281–288

    Article  PubMed  CAS  Google Scholar 

  78. Luoma PV Sotaniemi EA, Pelkonen RO, Ehnholm C (1982) Highdensity lipoproteins and hepatic microsomal enzyme induction in alcohol consumers. Res Commun Chem Pathol Pharmacol 37: 91–96

    PubMed  CAS  Google Scholar 

  79. LaPorte R, Valvo-Gerard L, Kuller L, Wanju R, Bates M, Cresanta J, Williams K, Palkin D (1981) The relationship between alcohol consumption, liver enzymes and high-density lipoprotein cholesterol. Circulation 64[Suppl 3]: 67–72

    CAS  Google Scholar 

  80. Beulens JW, Sierksma A, van Tol A, Fournier N, van Gent T, Paul JL, Hendricks HFJ (2004) Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1. J Lipid Res 45: 1716–1723

    Article  PubMed  CAS  Google Scholar 

  81. Costet P, Lalanne F, Gerbod-Gionnone M, Molina JR, Fu X, Lund EG, Gudas LJ, Tall AR (2003) Retinoid acid receptor-mediated induction of ABCA1 in macrophages. Mol Cell Biol 23: 7756–7766

    Article  PubMed  CAS  Google Scholar 

  82. Suzuki S, Nishimaki-Mogami T, Tamehiro N, Inoue K, Arakawa R, Abe-Dohmae S, Tanaka AR, Ueda K, Yokoyama S (2004) Verapamil increase apolipoprotein-mediated release of cellular cholesterol by induction of ABCA1 expression via liver X receptor-independent mechanism. Arterioscler Thromb Vasc Biol 24: 519–525

    Article  PubMed  CAS  Google Scholar 

  83. Nakaya K, Ayaori M, Hisada T, Sawada S, Tanaka N, Iwamoto N, Ogura M, Yakushji M, Nakamura H, Ohsuzu F (2007) Telmisartan enhances cholesterol efflux from THP-macrophages by activating PPARγ. J Atheroscler Thromb 14: 133–141

    PubMed  CAS  Google Scholar 

  84. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmacological modifiers. Arterioscler Thromb Vasc Biol 27: 1706–1721

    Article  PubMed  CAS  Google Scholar 

  85. Böhm M (2007) Angiotensin receptor blockers versus angiotensinconverting enzyme inhibitors: where do we stand now? Am J Cardiol 100[Suppl]: 38J–44J

    Article  PubMed  CAS  Google Scholar 

  86. Reiss AB, Rahman M, Chan ES, Montesinos C, Awadallah NW, Cronstein BN (2004) Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J Leukoc Biol 6:727–734

    Article  CAS  Google Scholar 

  87. Ylitalo R (2002) Biophosphonates and atherosclerosis. Gen Pharmacol 35: 287–296

    Google Scholar 

  88. Strobach D, Lorenz RL (2003) The biophosphonate ibandronate stimulates reverse cholesterol transport out of monocytoid cells by enhanced ABCA1 transcription. Biochem Biophys Res Commun 307:23–30

    Article  PubMed  CAS  Google Scholar 

  89. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, Davignon E, Erbel JC, Fruchart JC Tardif JC, Schoenhagen P, Crowe T, Cain V, Wolski K, Goormastic M, Tuzcu EM, for the ASTEROID investigators (2007) Effect of very high-intensity statin therapy on regression of coronay atherosclerosis. The Asteroid Trial. JAMA 295: 1556–1565

    Article  Google Scholar 

  90. Okazaki S, Yokoyama T, Miyauchi K, Shimada K, Kurata T, Sato H, Daida H (2004) Early statin treatment in patients with acute coronary syndrome. Demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronay event: the ESTABLISH study. Circulation 110: 1061–1068

    Article  PubMed  CAS  Google Scholar 

  91. Okkels Jensen L, Thayssen P, Pedersen KE, Stender S, Haghfelt T (2004) Regression of coronary atherosclerosis by simvastatin. A serial intravascular ultrasound study. Circulation 110: 265–270

    Article  CAS  Google Scholar 

  92. Brown BG, Hinckley Stukovsky K, Zhao XQ (2006) Simultaneous low-density lipoprotein-C lowering and high-density lipoprotein-C elevation for optimum cardiovascular disease prevention with various drug classes, and their combinations: meta-analysis of 23 randomized trial. Curr Opin Lipidol 17: 631–636

    Article  PubMed  CAS  Google Scholar 

  93. Ericsson CG, de Faire U, Grip L, Svane B, Hamsten A, Nilsson J (1996) Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male post-infarction patients. Lancet 347: 849–853

    Article  PubMed  CAS  Google Scholar 

  94. Thoenes M, Oguchi A, Nagamia S, Vaccari CS, Hammoud R, Umpierrez GE, Khan BV (2007) The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int J Clin Pract 61: 1942–1948

    Article  PubMed  CAS  Google Scholar 

  95. Nicholls SJ, Murat E, Sipahi I, Grasso AW, Schoenhagen P, Hu T, Wolski K, Crowe T, Desai MY, Hazen SI, Kapadia SR, Nissen SE (2007) Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 297: 499–508

    Article  PubMed  CAS  Google Scholar 

  96. Kiehl S, Willeit J, Rungger G, Egger G, Oberhollenzer F, Bonora E, fort the Bruneck Study Group (1998) Alcohol consumption and atherosclerosis: what is the relation. Prospective results from the Bruneck study. Stroke 29: 900–907

    Google Scholar 

  97. Femia R, Natali A, L’Abbate A, Ferrannini E (2006) Coronay atherosclerosis and alcohol consumption. Angiographic and mortality data. Arterioscler Thromb Vasc Biol 26: 1607–1612

    Article  PubMed  CAS  Google Scholar 

  98. Langenfeld MR, Forst T, Hohberg C, Kann P, Lübben G, Konrad T, Füllert SD, Sachara C, Pfützner A (2005) Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus. Results from a controlled randomized study. Circulation 111: 2525–2531

    Article  PubMed  CAS  Google Scholar 

  99. Koshiyama H, Nakamura Y, Tanaka S, Minamikawa J (2000) Decrease in carotid intima-media thickness after 1-year therapy with etidronate for osteopenia associated with type 2 diabetes. J Clin Endocrinol Metab 85: 2793–2796

    Article  PubMed  CAS  Google Scholar 

  100. Cheung BMY, Lauder IJ, Lau C-P, Kumana C (2004) Meta-analysis of large randomised controlled trials to evaluate the impact of statins on cardiovascular outcomes. Brit J Clin Pharmacol 57: 640–651

    Article  CAS  Google Scholar 

  101. Cholesterol Treatment Trialists’ [CTT] Collaborators (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 366: 1267–1278

    Article  CAS  Google Scholar 

  102. Athyros VG, Mikhailidis DP, Papageorgiou AA, Symeonidis AN, Mercouris BR, Pehlivanidis AN, Bouloukos VI, Elisaf M, for the GREACE Study Collaborative Group (2004) Effect of atorvastatin on high density lipoprotein cholesterol and its relationship with coronary events: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-disease evaluation (GREACE) study. Curr Med Res Opin 20: 627–637

    Article  PubMed  CAS  Google Scholar 

  103. Tenkanen L, Mänttäri M, Kovanen PT, Virkkunen H, Manninen V (2006) Gemfibrozil in the treatment of dyslipidemia. An 18-year follow-up of the Helsinki Heart Study. Arch Intern Med 166: 743–748

    Article  PubMed  CAS  Google Scholar 

  104. Muuronen A, Kaste M, Nikkilä E, Tolppanen E-M (1985) Mortality from ischaemic heart disease among patients using anticonvulsive drugs: a case-control study. Brit Med J 291: 1481–1483

    Article  CAS  Google Scholar 

  105. Poikolainen K (1995) Alcohol and mortality: a review. J Clin Epidemiol 48: 455–465

    Article  PubMed  CAS  Google Scholar 

  106. Dormandy JA, Charbonnel B, Eckland DAJ, Erdmann E, Massi-Benedetti M, Moules IK, on behalf of the PROactive investigators (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the Proactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366: 1279–1289

    Article  PubMed  CAS  Google Scholar 

  107. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356: 2457–2471

    Article  PubMed  CAS  Google Scholar 

  108. Astrup P, Kjeldsen K, Wanstrup J (1970) Effects of carbon monoxide exposure on the arterial walls. Ann NY Acad Sci 174: 294–300

    Article  PubMed  CAS  Google Scholar 

  109. Hedblad B, Ögren M, Engström G, Wollmer P, Janzon L (2005) Heterogeneity of cardiovascular risk among smokers is related to degree of carbon monoxide exposure. Atherosclerosis 179: 1771–1783

    Article  CAS  Google Scholar 

  110. Ehnholm C, Aho K, Huttunen JK, Kostiainen E, Mattila K, Pikkarainen J, Cantell K (1982) Effect of interferon on plasma lipoproteins and the activity of postheparin plasma lipases. Arteriosclerosis 2: 68–74

    PubMed  CAS  Google Scholar 

  111. Reiss AB, Patel CA, Rahman MM, Chan ESL, Hasneen K, Montesinos MM, Trachman JD, Cronstein BN (2004) Interferon-γ impedes reverse cholesterol transport and promotes foam cell transformation in TPH-1 human monocytes/macrophages. Med Sci Monit 10: BR420–BR425

    PubMed  CAS  Google Scholar 

  112. Panousis VG, Zuckerman SH (2000) Interferon-γ induces downregulation of Tangier disease gene [ATP-binding cassette transporter 1] in macrophage derived foam cells. Arterioscler Thromb Vasc Biol 20: 1565–1571

    PubMed  CAS  Google Scholar 

  113. Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, et al for the ILLUSTRATE investigators (2007) Effect of torcetrapib on the progression of coronary atherosclerosis. New Engl J Med 356: 1304–1316

    Article  PubMed  CAS  Google Scholar 

  114. Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MR, Billheimer JT, Rothblat GH, Rader DJ (2006) Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113: 90–97

    Article  PubMed  CAS  Google Scholar 

  115. Levin N, Bischoff ED, Daige CL, Thomas D, Vu CT, Heyman RA, Tangirala RK, Schulman IG (2005) Macrophage liver X receptor is required for anti-atherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 25: 135–142

    Article  PubMed  CAS  Google Scholar 

  116. Luoma PV, Sotaniemi EA, Pelkonen RO, Pirttiaho HI (1985) Serum low density and high density lipoprotein cholesterol, and liver size in subjects on drugs inducing hepatic microsomal enzymes. Eur J Clin Pharmacol 28: 615–618

    Article  PubMed  CAS  Google Scholar 

  117. Bretillon L, Lütjohann D, Stahle L, Widhe T, Bindl L, Eggertsen G, Diczfalusy U, Björkhem I (2000) Plasma levels of 24Shydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res 41: 840–845

    PubMed  CAS  Google Scholar 

  118. Wellington CL, Walker EKY, Suarez A, Kwok A, Bissada N, Singaraja R, Yang YZ, Zhang LH, James E, Wilson JE, Francone O, McManus BM, Hayden MR (2002) ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Invest 82: 273–283

    PubMed  CAS  Google Scholar 

  119. Lehrke M, Lebherz C, Millington SC, Guan HP, Millar J, Rader DJ, Wilson JM, Lazar MA (2005) Diet-dependent cardiovascular lipid metabolism controlled by hepatic LXRγ. Cell Metab 1: 297–308

    Article  PubMed  CAS  Google Scholar 

  120. Kliewer SA (2005) Cholesterol detoxification by nuclear pregnane X receptor. Proc Natl Acad Sci USA 102: 2675–2676

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. -V. Lunoma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunoma, P.V. Cytochrome P450 et activation génétique — de la pharmacologie à l’élimination du cholestérol et à la régression de l’athérosclérose. Bio trib. mag. 30, 15–24 (2009). https://doi.org/10.1007/s11834-009-0109-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11834-009-0109-2

Mots clés

Keywords

Navigation