Skip to main content
Log in

The role of cytochrome P450 in the regulation of cholesterol biosynthesis

  • Published:
Lipids

Abstract

A ubiquitously expressed member of the cytochrome P450 superfamily, CYP51, encodes lanosterol 14α-demethylase, the first step in the conversion of lanosterol into cholesterol in mammals. The biosynthetic intermediates of lanosterol 14α-demethylation are oxysterols, which inhibit HMG-CoA reductase and sterol synthesis in mammalian cells in vitro. These oxysterols (5α-lanos-8-en-3β,32-diol and 3β-hydroxy-5α-lanost-8-en-32-al) are efficiently converted into cholesterol in vitro and are generally considered to be natural cholesterol precursors. When added to hepatocytes in high concentrations, besides their conversion into cholesterol, they are also rapidly metabolized into more polar sterols and into steryl esters. The 15α- and 15β-hydroxy epimers of 5α-lanost-8-en-3β-ol are also rapidly metabolized into more polar sterols and steryl esters but are not converted efficiently into cholesterol. Polar sterol formation from all these oxysterols is dependent on an active form of cytochrome P450. Oxysterols are potent regulators of the activities of transcription factors of the sterol regulatory element-binding protein family and of liver X-receptor α. It is proposed that the rapid, cytochrome P450-dependent metabolism of naturally occurring regulatory oxysterols provides a route for their deactivation so that they become incapable of affecting gene transcription. Inhibition of cytochrome P450 by the drug ketoconazole prevents the inactivation of such oxysterols, leading to a prolonged suppression of hepatic HMG-CoA reductase in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

lanosterol:

5α-lanosta-8,24-dien-3β-ol

LXRα:

liver Xreceptor alpha

SREBP:

sterol regulatory element-binding protein

References

  1. Gibbons, G.F., Goad, L.J. and Goodwin, T.W. (1968) The Stereo-chemistry of Hydrogen Elimination from C-15 During Cholesterol Biosynthesis. J. Chem. Soc. Chem. Commun., 1458–1460.

  2. Akhtar, M., Freeman, C.W., Wilton, D.C., Boar, R.B., and Copsey, D.B. (1977) Oxidative Metabolism of Lanosterol in the Biosynthesis of Cholesterol. Bioorg. Chem. 6, 473–481.

    Article  CAS  Google Scholar 

  3. Gibbons, G.F., Mitropoulos, K.A., and Myant, N.B. (1982). Biochemistry of Cholesterol, pp. 131–188. Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  4. Gibbons, G.F., and Mitropoulos, K.A. (1973) The Role of Cytochrome P-450 in Cholesterol Biosynthesis. Eur. J. Biochem. 40, 267–273.

    Article  PubMed  CAS  Google Scholar 

  5. Alexander, K.T.W., Mitropoulos, K.A., and Gibbons, G.F. (1974) A Possible Role for Cytochrome P450 During the Biosynthesis of Zymosterol from Lanosterol by Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun. 60, 460–467.

    Article  PubMed  CAS  Google Scholar 

  6. Stromstedt, M., Rozman, D., and Waterman, M.R. (1996) The Ubiquitously Expressed Human CYP51 Encodes Lanosterol 14 α-Demethylase, a Cytochrome P450 Whose Expression Is Regulated by Oxysterols, Arch. Biochem. Biophys. 329, 73–81.

    Article  PubMed  CAS  Google Scholar 

  7. Debeliak, N., Horvat, S., Vouk, K., Lee, M., and Rozman, D. (2000) Characterization of the Mouse Lanosterol 14α-Demethylase (CYP51), a New Member of the Evolutionarily Most Conserved Cytochrome P450 Family, Arch. Biochem. Biophys. 379, 37–45.

    Article  CAS  Google Scholar 

  8. Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C., Gotoh, O., et al. (1993) The P450 Superfamily: Update on New Sequences, Gene Mapping. Accession Numbers, Early Trivial Names of Enzymes, and Nomenclature, DNA Cell Biol. 12, 1–51.

    Article  PubMed  CAS  Google Scholar 

  9. Gibbons, G.F., Mitropoulos, K.A., and Pullinger, C.R. (1976) Lanosterol 14α-Demethylase. The Metabolism of Some Potential Intermediates by Cell-free Systems from Rat Liver, Biochem. Biophys. Res. Commun. 69, 781–789.

    Article  PubMed  CAS  Google Scholar 

  10. Akhtar, M., Alexander, K., Boar, R.B., McGhie, J.F., and Barton, D.H. (1978) Chemical and Enzymic Studies on the Characterization of Intermediates During the Removal of the 14α-Methyl Group in Cholesterol Biosynthesis. The Use of 32-Functionalized Lanostane Derivatives. Biochem. J. 169, 449–463.

    PubMed  CAS  Google Scholar 

  11. Trzaskos, J.M. (1995) Oxylanosterols as Modifiers of Cholesterol Biosynthesis. Prog. Lipid Res. 34, 99–116.

    Article  PubMed  CAS  Google Scholar 

  12. Kandutsch, A.A., and Chen, H.W. (1973) Inhibition of Sterol Synthesis in Cultured Mouse Cells by 7α-Hydroxycholesterol, 7β-Hydroxycholesterol and 7-Ketocholesterol, J. Biol. Chem. 248, 8408–8417.

    PubMed  CAS  Google Scholar 

  13. Kandutsch, A.A., Chen, H.W., and Heiniger, H.J. (1978) Biological Activity of Some Oxygenated Sterols, Science 201, 498–501.

    Article  PubMed  CAS  Google Scholar 

  14. Schroepfer, G.J., Jr. (2000) Oxysterols: Modulators of Cholesterol Metabolism and Other Processes. Physiol. Rey. 80, 361–554.

    CAS  Google Scholar 

  15. Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002) SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver, J. Clin. Invest. 109, 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, M.S., and Goldstein, J.L. (1999) A Proteolytic Pathway That Controls the Cholesterol Content of Membranes, Cells, and Blood, Proc. Natl. Acad. Sci. USA 96, 11041–11048.

    Article  PubMed  CAS  Google Scholar 

  17. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R., and Mangelsdorf, D.J. (1996) An Oxysterol Signalling Pathway Mediated by the Nuclear Receptor LXRα, Nature 383, 728–731.

    Article  PubMed  CAS  Google Scholar 

  18. Peet, D.J., Turley, S.D., Ma, W., Janowski, B.A., Lobaccaro, J.M., Hammer, R.E., and Mangelsdorf, D.J. (1998) Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXRα, Cell 93, 693–704.

    Article  PubMed  CAS  Google Scholar 

  19. Lehmann, J.M., Kliewer, S.A., Moore, L.B., Smith-Oliver, T.A., Oliver, B.B., Su, J.L., Sundseth, S.S., Winegar, D.A., Blanchard, D.E., Spencer, T.A., and Willson, T.M. (1997) Activation of the Nuclear Receptor LXR by Oxysterols Defines a New Hormone Response Pathway. J. Biol. Chem. 272, 3137–3140.

    Article  PubMed  CAS  Google Scholar 

  20. Forman, B.M., Ruan, B., Chen, J., Schroepfer, G.J., Jr., and Evans, R.M. (1997) The Orphan Nuclear Receptor LXRα is Positively and Negatively Regulated by Distinct Products of Mevalonate Metabolism, Proc. Natl. Acad. Sci. USA 94, 10588–10593.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz, J.R., Tu, H., Luk, A., Repa, J.J., Medina, J.C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D.J., et al. (2000) Role of LXRs in Control of Lipogenesis, Genes Dev. 14, 2831–2838.

    Article  PubMed  CAS  Google Scholar 

  22. Repa, J.J., Turley, S.D., Lobaccaro, J.A., Medina, J., Li, L., Lustig, K., Shan, B., Heyman, R.A., Dietschy, J.M., and Mangelsdorf, D.J. (2000) Regulation of Absorption and ABC1-Mediated Efflux of Cholesterol by RXR Heterodimers, Science 289, 1524–1529.

    Article  PubMed  CAS  Google Scholar 

  23. Gibbons, G.F., Pullinger, C.R., Chen, H.W., Cavenee, W.K., and Kandutsch, A.A. (1980) Regulation of Cholesterol Synthesis in Cultured Cells by Probable Natural Precursor Sterols. J. Biol. Chem. 255, 375–400.

    Google Scholar 

  24. Cavenee, W.K., Gibbons, G.F., Chen, H.W., and Kandutsch, A.A. (1979) Effects of Various Oxygenated Sterols on Cellular Sterol Biosynthesis in Chinese Hamster Lung Cells Resistant to 25-Hydroxycholesterol, Biochim. Biophys. Acta 575, 255–265.

    PubMed  CAS  Google Scholar 

  25. Gibbons, G.F., Pullinger, C.R., Baillie, T.A., and Clare, R.A. (1980) Metabolism of Hydroxysterols by Rat Liver, Biochim. Biophys. Acta 619, 98–106.

    PubMed  CAS  Google Scholar 

  26. Gibbons, G.F. (1983) The Role of Oxysterols in the Regulation of HMG-CoA Reductase, Biochem. Soc. Trans. 11, 649–651.

    PubMed  CAS  Google Scholar 

  27. Marco de la Calle, C., Hwang, W., Pullinger, C.R., and Gibbons, G.F. (1988) A Relationship Between the Activities of Hepatic Lanosterol 14α-Demethylase and 3-Hydroxy-3-menthylglutaryl CoA Reductase, Biochem. J. 250, 33–39.

    PubMed  CAS  Google Scholar 

  28. Iglesias, J., and Gibbons, G.F. (1989) Regulation of Hepatic Cholesterol Biosynthesis. Effects of a Cytochrome P-450 Inhibitor on the Formation and Metabolism of Oxygenated Products of Lanosterol, Biochem. J. 264, 495–502.

    PubMed  CAS  Google Scholar 

  29. Gibbons, G.F., and Ramananda, K. (1975) Synthesis and Configuration at C-15 of the Epimeric 5α-Lanost-8-en-3β,15-diols, J. Chem. Soc. Chem. Commun., 213.

  30. Gibbons, G.F., Mitropoulos, K.A., and Pullinger, C.R. (1976) Lanosterol 14α-Demethylase. The Metabolism of Some Potential Intermediates by Cell-free Systems from Rat Lier. Biochem. Biophys. Res. Commun. 69, 781.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, M.S., Goldstein, J.L., and Dietschy, J.M. (1979) Active and Inactive Forms of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase in the Liver of the Rat. Comparison with the Rate of Cholesterol Synthesis in Different Physiological States. J. Biol. Chem. 254, 5144–5149.

    PubMed  CAS  Google Scholar 

  32. Iglesias, J. and Gibbons, G.F. (1989) Oxidative Metabolism of Cholesterol Precursors, Sensitivity to Ketoconazole, an Inhibitor of Cytochrome P-450, Steroids 53, 311–328.

    Article  PubMed  CAS  Google Scholar 

  33. Pullinger, C.R., and Gibbons, G.F. (1983) The Relationship Between the Rate of Hepatic Sterol Synthesis and the Incorporation of [3H] Water, J. Lipid Res. 24, 1321–1328.

    PubMed  CAS  Google Scholar 

  34. Bellamine, A., Mangla, A.T., Nes, W.D., and Waterman, M.R. (1999) Characterization and Catalytic Properties of the Sterol 14α-Demethylase from Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA 96, 8937–8942.

    Article  PubMed  CAS  Google Scholar 

  35. Podust, L.M., Poulos, T.L. and Waterman, M.R. (2001) Crystal Structure of Cytochrome P450 14α-Sterol Demethylase (CYP51) from Mycobacterium tuberculosis in Complex with Azole Inhibitors. Proc. Natl. Acad. Sci. USA 98, 3068–3073.

    Article  PubMed  CAS  Google Scholar 

  36. Byskov, A.G., Andersen, C.Y., Nordholm, L., Thogersen, H., Xia, G., Wassmann, O., Andersen, J.V., Guddal, E., and Roed, T. (1995) Chemical Structure of Sterols That Activate Oocyte Meiosis, Nature 374, 559–562.

    Article  PubMed  CAS  Google Scholar 

  37. Rozman, D., and Waterman, M.R. (1998) Lanosterol 14α-Demethylase (CYP51) and Spermatogenesis, Drug Metab. Dispos. 26, 1199–1201.

    PubMed  CAS  Google Scholar 

  38. Shimano, H. (2001) Sterol Regulatory Element-Binding Proteins (SREBPs): Transcriptional Regulators of Lipid Synthetic Genes. Prog. Lipid Res. 40:439–452.

    Article  PubMed  CAS  Google Scholar 

  39. Brown, A.J., Sun, L., Feramisco, J.D., Brown, M.S., and Goldstein, J.L. (2002) Cholesterol Addition to ER Membranes Alters Conformation of SCAP, the SREBP Escort Protein That Regulates Cholesterol Metabolism, Mol. Cell. 10, 237–245.

    Article  PubMed  CAS  Google Scholar 

  40. Saucier, S.E., Kandutsch, A.A., Phirwa, S., and Spencer, T.A. (1987) Accumulation of Regulatory Oxysterols, 32-Oxolanosterol and 32-Hydroxylanosterol in Mevalonate-Treated Cell Cultures, J. Biol. Chem. 262, 14056–14062.

    PubMed  CAS  Google Scholar 

  41. Tabacik, C., Aliau, S., Astruc, M., and Crastes de Paulet, A. (1981) Post-HMG-CoA Reductase Regulation of Cholesterol Biosynthesis in Normal Human Lymphocytes and Lanosten-3β-ol-32-al, a Natural Inhibitor, Biochem. Biophys. Res. Commun. 101, 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  42. Gibbons, G.F., Pullinger, C.R., and Mitropoulos, K.A. (1979) Studies on the Mechanism of Lanosterol 14α-Demethylase. A Requirement for Two Distinct Types of Mixed Function Oxidase. Biochem. J. 183, 309–315.

    PubMed  CAS  Google Scholar 

  43. Janowski, B.A., Grogan, M.J., Jones, S.A., Wisely, G.B., Kliewer, S.A., Corey, E.J., and Mangelsdorf, D.J. (1999) Structural Requirements of Ligands for the Oxysterol Liver X Receptors LXRα and LXRβ. Proc. Natl. Acad. Sci. U.S.A. 96, 266–271.

    Article  PubMed  CAS  Google Scholar 

  44. Kandutsch, A.A., and Chen, H.W. (1974) Inhibition of Sterol Synthesis in Cultured Mouse Cells by Cholesterol Derivatives Oxygenated in the Side Chain, J. Biol. Chem. 249, 6057–6061.

    PubMed  CAS  Google Scholar 

  45. Kandutsch, A.A., and Chen, H.W. (1978) Inhibition of Cholesterol Synthesis by Oxygenated Sterols. Lipids 13, 704–707.

    PubMed  CAS  Google Scholar 

  46. Martin, K.O., Reiss, A.B., Lathe, R., and Javitt, N.B. (1997) 7α-Hydroxylation of 27-Hydroxycholesterol: Biologic Role in the Regulation of Cholesterol Synthesis, J. Lipid Res. 38, 1053–1058.

    PubMed  CAS  Google Scholar 

  47. Kuipers, F., Havinga, R., Huijsmans, C.M., Vonk, R.J., and Princen, H.M. (1989) Inhibition and Induction of Bile Acid Synthesis by Ketoconazole. Effects on Bile Formation in the Rat, Lipids 24, 759–764.

    PubMed  CAS  Google Scholar 

  48. Kempen, H.J., van Son, K., Cohen, L.H., Griffioen, M., Verboom, H., and Havekes, L. (1987) Effect of Ketoconazole on Cholesterol Synthesis and on HMG-CoA Reductase and LDL-Receptor Activities in Hep G2 cells. Biochem. Pharmacol. 36, 1245–1249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey F. Gibbons.

About this article

Cite this article

Gibbons, G.F. The role of cytochrome P450 in the regulation of cholesterol biosynthesis. Lipids 37, 1163–1170 (2002). https://doi.org/10.1007/s11745-002-1016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-1016-x

Keywords

Navigation