Skip to main content
Log in

Structure of plant–Hymenoptera networks in two coastal shrub sites in Mexico

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The study of interaction networks between plants and pollinators allows us to explore interaction patterns at the community level, detect changes in visit frequency and evaluate the nestedness of the networks. The latter allows rare plant species to be visited by more abundant species of pollinators, potentially allowing community diversity to be maintained, and this approach makes it possible to discern the rewiring (changes in connections) of species when their preferred resource is not available. In this study, the topology, species identity and rewiring were compared between two contrasting sites, one within a conservation area and the other subjected to continuous disturbance. The networks of both sites were significantly nested and shared a high number of common species of both plants and pollinators. However, the sites differed notably in the number of exclusive interactions, suggesting a high percentage of interaction rewiring. The introduced bee species, Apis mellifera, was the most frequent species at both sites and also the most connected in terms of the number of its interactions. This is explained by its generalist foraging characteristics that allow it to form part of the networks’ core group. In general, our results underscore the importance of knowing the identity of the participating species when studying networks, and how connections change between them, as well as the potential effect of habitat destruction and the role of invasive species in the rearrangement of the interactions; all factors that can exert an influence on the functioning of plant–pollinator networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aizen MA, Feinsinger P (1994) Habitat fragmentation, native insect pollinators, and feral honeybees in Argentine “Chaco Serrano”. Ecol App 4:378–392

    Article  Google Scholar 

  • Aizen MA, Vázquez DP (2006) Flower performance in human-altered habitats. In: Harder LD, Barrett SCH (eds) Ecology and evolutions of flowers. Oxford University Press, Oxford, pp 159–179

    Google Scholar 

  • Aizen MA, Morales CL, Morales JM (2008) Invasive mutualists erode native pollination webs. PLoS Biol 6:396–403

    Article  CAS  Google Scholar 

  • Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos 12:1796–1807

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Ashworth L, Aguilar R, Galetto L, Aizen MA (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J Ecol 92:717–719

    Article  Google Scholar 

  • Bartomeus I (2013) Understanding linkage rules in plant-pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS One 8:1–8

    Article  CAS  Google Scholar 

  • Bartomeus I, Villa M, Santamaría L (2008) Contrasting effects of invasive plants in pollinator networks. Oecologia 155:761–770

    Article  PubMed  Google Scholar 

  • Bascompte J (2009) Disentangling the web of life. Science 325:416–419

    Article  CAS  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melian C, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. PNAS 16:9383–9387

    Article  CAS  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:10180–11021

    Article  CAS  Google Scholar 

  • Beekman M, Ratnieks W (2000) Long-range foraging by the honey-bee, Apis mellifera L. Funct Ecol 14:490–496

    Article  Google Scholar 

  • Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl Ecol 11:185–195

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interactions networks. BMC Ecol 6:9

    Article  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints and conflicting interests in mutualistic networks. Curr Biol 17:1–6

    Article  CAS  Google Scholar 

  • Borgatti SP, Everett MG, Freeman LC (2002) UCINET 6 for Windows: software for social network analysis. Analytic Technologies, Harvard

    Google Scholar 

  • CONANP (2007) Programa de Conservación y Manejo Reserva de la Biosfera Ría Lagartos. México SEMARNAT

  • Cunningham SA (2000) Depressed pollination in habitat fragments causes low fruit set. Proc R Soc Lond B 267:1149–1152

    Article  CAS  Google Scholar 

  • Díaz-Castelazo C, Guimarães P, Jordano P, Thompson JN, Marquis RJ, Rico-Gray V (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91:793–801

    Article  PubMed  Google Scholar 

  • Dormann CF, Gruber B, Frund J (2008) Introducing the bipartite package: analysing ecological networks. R News 2:811

    Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Gonzalez A, Rayfield B, Lindo Z (2011) The disentangled bank: how loss of habitat fragments and disassembles ecological networks. Am J Bot 98:503–516

    Article  PubMed  Google Scholar 

  • Goulet H, Huber JT (1993) Hymenoptera of the world. Public works government services

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

    Article  Google Scholar 

  • Guimarães P, Guimarães PR (2005) ANINHADO 1.0. (www.guimaraes.bio.br)

  • Hegland SJ, Dunne J, Nielsen A, Memmott J (2010) How to monitor ecological communities cost-efficiently: the example of plant-pollinator networks. Biol Conserv 143:2092–2101

    Article  Google Scholar 

  • INE (1999) Plan de Manejo de la Reserva de la Biosfera Ría Lagartos. INE

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal-connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Jordano P, Vázquez D, Bascompte J (2009) Redes complejas de interacciones mutualistas planta-animal. In: Medel R, Aizen M, Zamora R (eds) Ecología y Evolución de Interacciones Planta-Animal: Conceptos y Aplicaciones. Editorial Universitaria, Santiago de Chile, pp 17–41

    Google Scholar 

  • Kaiser-Bunbury C, Muff S, Memmott J, Muller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behavior. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kay MK, Schemske DW (2004) Geographic patterns in plant-pollinator mutualistic networks: comment. Ecology 85:875–878

    Article  Google Scholar 

  • Kearns CA, Inouye D, Waser N (1998) Endangered mutualism: the conservation of plant pollinator interactions. Annu Rev Ecol Evol Syst 29:83–112

    Article  Google Scholar 

  • Manly BFJ (1992) RT A program for randomization testing. Version 1.02. The centre for applications of statistics and mathematics. University of Otago

  • Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. 2nd edition. Texts in statistical science. Chapman & Hall, London

    Google Scholar 

  • Martínez-Falcón AP, Marcos-García A, Díaz-Castelazo C, Rico-Gray V (2010) Seasonal changes in cactus-hoverfly (Diptera:Syrphidae) network. Ecol Entomol 35:754–759

    Article  Google Scholar 

  • Medel R, Rivera-Hutinel A, Bustamante RO (2010) Análisis de redes mutualistas y fragmentación: una herramienta para el estudio de la biodiversidad del Bosque Maulino. In: Bustamante RO, Bachman PL (eds) Historia natural del Bosque Maulino costero: disectando la biodiversidad en un paisaje antropogenizado. Alvin Press, Santiago de Chile, pp 29–41

    Google Scholar 

  • Meléndez-Ramírez V, Magaña-Rueda S, Parra-Tabla V, Ayala R, Navarro J (2002) Diversity of native bee visitors of cucurbit in Yucatán, México. J Insect Conserv 6:135–147

    Article  Google Scholar 

  • Memmott J, Waser N, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc London B 271:2605–2611

    Article  Google Scholar 

  • Meneses Calvillo L, Meléndez Ramírez V, Parra-Tabla V (2010) Bee diversity in a fragmented landscape of the Mexican neotropic. J Insect Conserv 14:323–334

    Article  Google Scholar 

  • Michener CD (2007) The bees of the world. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009) Ecology and evolution of plant-pollinator interactions. Ann Botany 103:1355–1363

    Article  Google Scholar 

  • Montero-Castaño A, Vilá M (2012) Impact of landscape alteration and invasions on pollinators: a meta-analysis. J Ecol 100:884–893

    Article  Google Scholar 

  • Morales C, Aizen M (2002) Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the southern Andes. Biol Invasions 4:87–100

    Article  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Phil Trans R Soc B 365:3709–3718

    Article  PubMed  Google Scholar 

  • Novelo-Rincón L, Delfín H, Ayala R, Contreras H (2003) Community structure of native bees in four vegetation types in the dry tropics of Yucatán, México. Folia Entomol Mex 42:177–190

    Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin Pr, O’Hara RB, Simpson GL, Henry M, Wagner S, Wagner S (2013) Vegan: community ecology package. R package version 2.0-7 http://CRAN.R-project.org/package=vegan

  • Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582

    Article  PubMed  Google Scholar 

  • Parra-Tabla V, Vargas CF, Magaña-Rueda S, Navarro J (2000) Female and male pollination success of Oncidium ascendens Lindey (Orchidaceae) in two contrasting habitat patches: forest vs. agricultural field. Biol Conserv 94:335–340

    Article  Google Scholar 

  • Parra-Tabla V, Vargas CF, Naval C, Calvo LM, Ollerton J (2011) Population status and reproductive success of an endangered epiphytic orchid in a fragmented landscape. Biotropica 43:640–647

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Pinkus-Rendón MA, Parra-Tabla V, Meléndez Ramírez V (2005) Floral resource use and interactions between Apis mellifera and native bees in cucurbit crops in Yucatan, México. Can Entomol 137:441–449

    Article  Google Scholar 

  • Quezada-Euán JJ (2000) Hybridization between European and Africanized honeybees in tropical Yucatán, México. II Morphometric, allozymic and mitochondrial DNA variability in feral colonies. Apidologie 31:443–453

    Article  Google Scholar 

  • Quezada-Euán JJG, May-Itzá WJ (1996) Características morfométricas, poblacionales y parasitosis de colonias silvestres de Apis mellifera (Hymenoptera:Apidae) en Yucatán, México. Folia Entomol Mex 97:1–19

    Google Scholar 

  • Ramírez N (1989) Biología de polinización en una comunidad arbustiva tropical de la alta Guayana venezolana. Biotropica 4:319–330

    Article  Google Scholar 

  • Reyes-Novelo E, Meléndez-Ramírez V, Ayala R, Delfín González H (2009) Bee faunas (Hymenoptera: Apoidea) of six natural protected areas in Yucatán, México. Entomol News 120:530–544

    Article  Google Scholar 

  • Richards OW (1978) The social wasps of the Americas excluding the Vespinae. British Museum (Natural History), London

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Roubik DW (1982) Ecological impact of Africanized honeybees on native neotropical pollinators. In: Jaisson P (ed) Social insects in the tropics Vol 1. Université Paris-Nord, Paris, pp 233–247

    Google Scholar 

  • Sabatino M, Manceira N, Aizen MA (2010) Direct effects of habitat area on interaction diversity in pollination webs. Ecol Appl 6:1491–19497

    Article  Google Scholar 

  • Taki H, Kevan PG (2007) Does habitat loss affect the communities of plants and insects equally in plant-pollinator interactions? Preliminary findings. Biodivers Conser 16:3147–3161

    Article  Google Scholar 

  • Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM (2013) Invaders of pollination networks in the Galapagos Islands: emergence of novel communities. Proc Soc R B 280:20123040. doi:10.1098/rspb.2012.3040

    Article  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 84:2493–2501

    Article  Google Scholar 

  • Vázquez DP, Simberloff D (2003) Changes in interaction biodiversity induced by an introduced ungulate. Ecol Lett 6:1077–1083

    Article  Google Scholar 

  • Vilá M, Bartomeus I, Diestzsch AC, Petanidou T, Steffan-Dewenter I, Stout JC, Tscheulin T (2009) Invasive plant integration into native plant-pollinator networks across Europe. Proc R Soc B 276:3887–3893

    Article  PubMed  Google Scholar 

  • Westerkamp C (1991) Honeybees are poor pollinators—why? Plant Syst Evol 177:71–75

    Article  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 8:2068–2076

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CONACYT (CB2007-84112) and PROMEP CLAVE: 103.5/12/2117. MJCN thanks CONACYT for financial support through a M.Sc. scholarship (Conacyt-334553). We are grateful to Steven Johnson, two anonymous reviewers and to Jorge Navarro and Miguel Munguía for their comments and suggestions. We acknowledge the logistical support of the RLBR and CONANP. D. Fabián, D. Marrufo, L. Díaz, R. Carrillo, A. Monforte, R. Moo, T. Ramírez, U. Solís and L. Salinas provided assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Parra-Tabla.

Additional information

Handling Editor: Steven Johnson.

Appendix

Appendix

See Table 3.

Table 3 Plant and pollinator species identities coded for each network (site) and ordered based on the frequency and degree of interaction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos-Navarrete, M.J., Parra-Tabla, V., Ramos-Zapata, J. et al. Structure of plant–Hymenoptera networks in two coastal shrub sites in Mexico. Arthropod-Plant Interactions 7, 607–617 (2013). https://doi.org/10.1007/s11829-013-9280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-013-9280-1

Keywords

Navigation