Skip to main content
Log in

Effects of Ellman’s reagent and other thiol compounds on ion transport and ATPase activity in anaerobically grown Escherichia coli cells

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

It was found that modification of thiol (SH-) groups of membrane proteins by Ellman’s reagent (5,5′-dithiol-bis-(2-nitrobenzoic) acid) results in inhibition of proton efflux and K+ influx in anaerobically grown (pH 7.5) wild-type strains of Escherichia coli and causes disturbances in K+-dependent, N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity and molecular hydrogen production. No such effects were observed after substitution of the cysteine residue in the b-subunit of F0 of proton F0F1-ATPase for alanine. Moreover, the redox potential (RP) decreased as a result of H2 release during glucose fermentation and formate utilization was partly restored in the presence of Ellman’s reagent. Similar changes were established when another specific SH-reagent, succinimidyl-6(β-maleimidopropionamido)hexanoate, was used. Another thiol reagent, N-ethylmaleimide, did not exert such effects despite its inhibitory action on ion transport and ATPase activity. The data obtained provide conclusive evidence in favor of essential role of thiol groups and the cysteine residue in the b-subunit of F0 of F0F1-ATPase in proton-potassium exchange and H2 production in E. coli cells. The results also point to a possible involvement of SH-groups in the TrkA system of K+ uptake and an involvement of hydrogenases 3 or 4 in the interactions of these integral proteins with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurganov, B.I., Fiziko-khimicheskie mekhanizmy regulyatsii aktivnosti fermentov (Physico-Chemical Mechanisms of Regulation of Enzyme Activity), Moscow: Nauka Press, 1992.

    Google Scholar 

  2. Voloshin, A.G., Belkina, N.A., and Bourd, G.I., Mechanism of Catabolic Repression in Escherichia coli: Interaction between Transport Proteins and Adenylate Cyclase, Biokhimiya (Rus.), 1983, vol. 48, pp. 1624–1633.

    CAS  Google Scholar 

  3. Martirosov, S.M. and Trchounian, A.A., An Electrochemical Study of Energy-Dependent Potassium Accumulation in E. coli. Part 9. Reversal of the Mechanism Exchanging 2H+ for K+ with the Coupled Synthesis of ATP, Bioelectrochem. Bioenerg., 1982, vol. 9, pp. 459–467.

    Article  CAS  Google Scholar 

  4. Trchounian, A., Escherichia coli Proton- Translocating F0F1-ATP Synthase and Its Association with Solute Secondary Transporters and/or Enzymes of Anaerobic Oxidation-Reduction under Fermentation, Biochem. Biophys. Res. Commun., 2004, vol. 315, pp. 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  5. Martirosov, S.M., Direct Transfer of Energy by Dithiol-Disulfide Interconversion, J. Theor Biol., 1990, vol. 144, pp. 69–73.

    Article  CAS  Google Scholar 

  6. Trchounian, A., Ogandjanian, E., and Bagramyan, K., The Origin of K+ Uptake Systems Involved in ProtonPotassium Exchange and Molecular Hydrogen Production in Anaerobically Grown Escherichia coli, Biologicheskie Membrany (Rus.), 1995, vol. 12, pp. 496–508.

    CAS  Google Scholar 

  7. Mnatsakanian, N., Zakharyan, E., Bagramyan, K., and Trchounian, A., Dithiol-Disulfide Transitions in Membrane Transport Proteins of Escherichia coli, Biologicheskie Membrany (Rus.), 2002, vol. 19, pp. 183–192.

    Google Scholar 

  8. Trchounian, A.A. and Ogandjanian, E.S., An Electrochemical Study of Energy-Dependent Potassium Accumulation in E. coli. Part 15. K+-Uptaking Activity in trk Mutants, Bioelectrochem. Bioenerg., 1996, vol. 39, pp. 161–166.

    Article  CAS  Google Scholar 

  9. Trchounian, A., Ohanjanyan, Y., Bagramyan, K., Zakharyan, E., Vardanian, V., Vassilian, A., and Davtian, M., Relationship of the Escherichia coli TrkA System of Potassium Ion Uptake with the F0F1-ATPase under Growth Conditions without Anaerobic or Aerobic Respiration, Biosci. Rep., 1998, vol. 18, pp. 143–154.

    Article  PubMed  CAS  Google Scholar 

  10. Trchounian, A.A., Durgaryan, S.S., Ogandjanian, E.S., Ter-Nikogossian, V.A., Vardanian, A.G., Oganessyan, M.I., Petrossian, L.S., Vanian, P.A., Karagulian, E.A., and Martirosov, S.M., Study of the Ability of Anaerobically Grown Bacteria to Exchange Intracellular 2H+ for Medium K+ and to Create High Levels of K+ Distribution between the Cell and the Medium, Biologicheskie Nauki (Rus.), 1986, no. 12, pp. 82–88.

    Google Scholar 

  11. Poladian, A., Kirakossian, G., and Trchounian, A., Growth and Proton-Potassium Exchange in Enterococcus hirae Cells: Effect of the Protonophore and Role of the Redox Potential, Biofizika (Rus.), 2006, vol. 51, pp. 499–503.

    CAS  Google Scholar 

  12. Poladyan, A., and Trchounian, A., The Increase in the Number of Accessible SH-Groups in the Enterococcal Membrane Vesicles by ATP and Nicotinamide Adenine Dinucleotides, Curr Microbiol., 2006, vol. 52, pp. 300–304.

    Article  PubMed  CAS  Google Scholar 

  13. Trchounian, A.A., Bagramyan, K.A., and Poladian, A.A., Formate Hydrogenlyase Is Needed for Proton-Potassium Exchange through the F0F1 ATPase and the TrkA System in Anaerobically Grown and Glycolysing Escherichia coli, Curr Microbiol., 1997, vol. 35, pp. 201–206.

    Article  PubMed  CAS  Google Scholar 

  14. Bagramyan, K., Mnatsakanyan, N., and Trchounian, A., Formate Increases the F0F1-ATPase Activity in Escherichia coli Membrane Vesicles, Biochem. Biophys. Res. Commun., 2003, vol. 306, pp. 361–365.

    Article  PubMed  CAS  Google Scholar 

  15. Bagramyan, K. and Trchounian, A., Structural and Functional Peculiarities of Formate Hydrogen Lyase, a Mixed-Type Fermentation Enzyme in Escherichia coli, Biokhimiya (Rus.), 2003, vol. 68, pp. 1145–1158.

    Google Scholar 

  16. Bagramyan, K., Mnatsakanyan, N., Poladyan, A., Vassilian, A., and Trchounian, A., The Roles of Hydrogenases 3 and 4 and the F0F1-ATPase in H2 Production by Escherichia coli at Alkaline and Acidic pH, FEES Lett., 2002, vol. 516, pp. 172–178.

    Article  CAS  Google Scholar 

  17. Mnatsakanyan, N., Vassilian, A., Navasardian, L., Bagramyan, K., and Trchounian, A., Regulation of the Escherichia coli Formate Hydrogen Lyase by Formate at Alkaline pH, Curr Microbiol., 2002, vol. 45, pp. 281–286.

    Article  PubMed  CAS  Google Scholar 

  18. Mnatsakanyan, N., Bagramyan, K., and Trchounian, A., Hydrogenase 3 but not Hydrogenase 4 Is Major in Hydrogen Gas Production by Escherichia coli Formate Hydrogenlyase at Acidic pH and in the Presence of External Formate, Cell Biochem. Biophys., 2004, vol. 41, pp. 357–366.

    Article  PubMed  CAS  Google Scholar 

  19. Kirakosyan, G., Bagramyan, K., and Trchounian, A., Redox Sensing by Escherichia coli: Effects of Dithiothreitol, a Redox Reagent Reducing Disulphides, on Bacterial Growth, Biochem. Biophys. Res. Commun., 2004, vol. 325, pp. 803–806.

    Article  PubMed  CAS  Google Scholar 

  20. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R.K., and Trchounian, A., F0 Cysteine, bCys21, in the Escherichia coli ATP Synthase Is Involved in Regulation of Potassium Uptake and Molecular Hydrogen Production in Anaerobic Conditions, Biosci. Rep., 2002, vol. 22, pp. 421–430.

    Article  PubMed  CAS  Google Scholar 

  21. Sasahara, K.C., Heinzinger, N.K., and Barrett, E.L., Hydrogen Sulfide Production and Fermentative Gas Production by Salmonella typhimurium Require F0F1 ATPase Activity, J. Bacteriol., 1997, vol. 179, pp. 6736–6740.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Voncken, F.G., Boxma, B., Van Hoek, A.H., Akhmanova, A., Vogels, G.D., Huynen, M., Veenhuis, M., and Hackstein, J.H., A Hydrogenosomal [Fe]-Hydrogenase from the Anaerobic Chytrid Neocallimastix Sp. L2, Gene, 2002, vol. 284, pp. 103–112.

    Article  PubMed  CAS  Google Scholar 

  23. Konings, W.N. and Kaback, R.H., Anaerobic Transport in Escherichia coli Membrane Vesicles, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 3376–3381.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Kirakossian, G. and Trchounian, A., Redox Sensing by Escherichia coli: Effects of Copper Ions as Oxidizers on Proton-Coupled Membrane Transport, Bioelectrochemistry, 2007, vol. 70, pp. 58–63.

    Article  CAS  Google Scholar 

  25. Trchounian, A.A. and Vassilian, A.V., Relationship between the F0F1-ATPase and the K+-Transport System within the Membrane of Anaerobically Grown Escherichia coli. N,N'-Dicyclohexylcarbodiimide-Sensitive ATPase Activity in Mutants with Defects in K+-Transport, J. Bioenerg. Biomembr, 1994, vol. 26, pp. 563–571.

    Article  PubMed  CAS  Google Scholar 

  26. Bagramyan, K., Galstyan, A., and Trchounian, A., Redox Potential Is a Determinant in the Escherichia coli Anaerobic Growth and Survival: Effect of Impermeable Oxidant, Bioelectrochemistry, 2000, vol. 51, pp. 151–156.

    Article  PubMed  CAS  Google Scholar 

  27. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 254–271.

    Google Scholar 

  28. Lakin, V.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1992.

    Google Scholar 

  29. Martirosov, S.M. and Trchounian, A.A., An Electrochemical Study of Energy-Dependent Potassium Accumulation in E. coli.11. The Trk System in Anaerobically and Aerobically Grown Cells, Bioelectrochem. Bioenerg., 1986, vol. 15, pp. 417–426.

    Article  CAS  Google Scholar 

  30. Haguenauer-Tsapis, R. and Kepes, A., Unmasking of an Essential Thiol during Function of the Membrane Bound Enzyme II of the Phosphoenolpyruvate Glucose Phos photransferase System of Escherichia coli, Biochim. et Biophys. Acta, 1977, vol. 465, pp. 118–130.

    Article  CAS  Google Scholar 

  31. Roossien, F.F. and Robillard, G.T., Vicinal Dithiol-Disulfide Distribution in the Escherichia coli Mannitol Specific Carrier Enzyme, Intl. Biochemistry, 1984, vol. 17, pp. 211–215.

    Article  Google Scholar 

  32. Han, M.K., Roseman, S., and Brand, L., Sugar Transport by the Bacterial Phosphotransferase System. Characterization of the Sulphhydryl Groups and Site-Specific Labeling of Enzyme I, J. Biol. Chem., 1990, vol. 265, pp. 1985–1995.

    PubMed  CAS  Google Scholar 

  33. Iwaarden, PR., Driessen, A.J.M., and Konings, W.N., What We Can Learn from the Effects of Thiol Reagents on Transport Proteins, Biochim. et Biophys. Acta, 1992, vol. 1113, pp. 161–170.

    Article  Google Scholar 

  34. Schmidt, G. and Senior, A.E., ATP-Dependent Inactivation of the Beta-Ser339Cys Mutant F1-ATPase from Escherichia coli by N-Ethylmaleimide, Biochemistry, 1995, vol. 34, pp. 9694–9699.

    Article  PubMed  CAS  Google Scholar 

  35. Sahin-Toth, M., Frillingos, S., Lawrence, M.C., and Kaback, H.R., The Sucrose Permease of Escherichia coli: Functional Significance of Cysteine Residues and Properties of a Cysteine-less Transporter, Biochemistry, 2000, vol. 39, pp. 6164–6169.

    Article  PubMed  CAS  Google Scholar 

  36. Hollenbach, A.D., Dickson, K.A., and Washabaugh, M.W., Thiamine Transport in Escherichia coli: The Mechanism of Inhibition by the Sulfhydryl-Specific Modifier N-Eth ylmaleimide, Biochim. et Biophys. Acta, 2002, vol. 1564, pp. 421–428.

    Article  CAS  Google Scholar 

  37. Mnatsakanyan, N., Poladian, A., Bagramyan, K., and Trchounian, A., The Number of Accessible SH-Groups in Escherichia coli Membrane Vesicles Is Increased by ATP and by Formate, Biochem. Biophys. Res. Commun., 2003, vol. 308, pp. 655–659.

    Article  PubMed  CAS  Google Scholar 

  38. Wei, Y and Fu, D., Binding and Transport of Metal Ions at the Dimer Interface of the Escherichia coli Metal Transporter YiiP, J. Biol. Chem., 2007, vol. 281, pp. 23 492–23 502.

    Article  CAS  Google Scholar 

  39. Hsu, M.F., Sun, S.P., Chen, YS., Tsai, C.R., Huang, L.J., Tsao, L.T., Kuo, S.C., and Wang, J.P., Distinct Effects of N-Ethylmaleimide on Formyl Peptide- and Cyclopiazonic Acid-Induced Ca2+ Signals through Thiol Modification in Neutrophils, Biochem. Pharmacol., 2005, vol. 70, pp. 1320–1

    Article  PubMed  CAS  Google Scholar 

  40. Gosmitckaya, I.S., Cecchini, G., and Vinogradov, A.D., Topography and Chemical Reactivity of the Active-Inactive Transition-Sensitive SH-Group in the Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I), Biochim. et Biophys. Acta, 2006, vol. 1757, pp. 1155–1161.

    Article  CAS  Google Scholar 

  41. Riddles, PW., Blakeley, R.L., and Zerner, B., Reassessment of Ellman's Reagent, Meth. Enzymol., 1983, vol. 91, pp. 49–60.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, Z., Stokes, D.L., Rice, W.J., and Jone, L.R., Spatial and Dynamic Interactions between Phospholamban and the Canine Cardiac Ca+2 Pump Revealed with Use of Heterobifunctional Cross-Linking Agents, J. Biol. Chem., 2003, vol. 278, no. 48, pp. 48348–48356.

    Article  PubMed  CAS  Google Scholar 

  43. Trchounian, A.A., Ogandjanyan, E. S., and Mironova, G. D., An Electrochemical Study of Energy-Dependent Potassium Accumulation in E. coli. 13. On the Interaction of the H+-Translocating F0F1-ATPase with the Trk Proteins in Anaerobically Grown Cells, Bioelectrochem. Bioenerg., 1992, vol. 27, pp. 367–372.

    Article  Google Scholar 

  44. Lebedev, V.S., Volodina, L.A., Deinega, E.I., and Fedorov, Ya.I., Structural Modification on the Surface of Escherichia coli and Copper-Induced Permeability of Plasma Membrane, Biofizika (Rus.), 2005, vol. 50, pp. 107–113.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Trchounian.

Additional information

Original Russian Text © A. Poladyan, K. Trchounian, L. Tadevosyan, A. Trchounian, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 1, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poladyan, A., Trchounian, K., Tadevosyan, L. et al. Effects of Ellman’s reagent and other thiol compounds on ion transport and ATPase activity in anaerobically grown Escherichia coli cells. Biochem. Moscow Suppl. Ser. A 2, 1–7 (2008). https://doi.org/10.1007/s11827-008-1001-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11827-008-1001-z

Keywords

Navigation