Skip to main content

Advertisement

Log in

Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Photocatalysts with a small band gap energy have received a great deal of interest due their high solar conversion efficiencies. Cuprous oxide (Cu2O) has attracted attention because of its small bandgap energy, a direct bandgap structure, its suitable band structure for water splitting, high absorption coefficient, non-toxicity, and its large abundance. However, it has poor stability due to the fickle oxidation states of copper. To enhance the stability and the production rate of hydrogen and oxygen, a TiIrOX overlayer was successfully formed on the Cu2O under various synthesis conditions. The composition and oxidation state of the Ir species in the overlayer were optimized through the control of the Ir precursor and the amount of water. The Ir/Ti precursor molar ratio was linearly related to the surface Ir/Ti molar ratio. The addition of water converted the Ir precursor to IrO2. The thickness of the overlayer was controlled by differing the synthesis times of the coating. Then, the largest amounts of hydrogen and oxygen were produced through the optimization of the TiIrOX overlayer with a higher IrO2 fraction and a thicker overlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abe, J. Photochem. Photobio. C-Photochem. Rev., 11, 179 (2010).

    Article  Google Scholar 

  2. K. Maeda, J. Photochem. Photobiol. C-Photochem. Rev., 12, 237 (2011).

    Article  CAS  Google Scholar 

  3. A. Fujishima and K. Honda, Nature, 238, 37 (1972).

    Article  CAS  Google Scholar 

  4. X. B. Chen, S. H. Shen, L. J. Guo and S. S. Mao, Chem. Rev., 110, 6503 (2010).

    Article  CAS  Google Scholar 

  5. W. H. Hung, T. M. Chien and C. M. Tseng, J. Phys. Chem. C, 118, 12676 (2014).

    Article  CAS  Google Scholar 

  6. H. Kato, K. Asakura and A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003).

    Article  CAS  Google Scholar 

  7. K. Yamaguti and S. Sato, J. Chem. Soc., Faraday Trans. I, 81, 1237 (1985).

    Article  CAS  Google Scholar 

  8. G.N. Schrauzer and T.D. Guth, J. Am. Chem. Soc., 99, 7189 (1977).

    Article  CAS  Google Scholar 

  9. T. Takata and K. Domen, J. Phys. Chem. C, 113, 19386 (2009).

    Article  CAS  Google Scholar 

  10. J. Kim, D. Hwang, S. Bae, Y. Kim and J. Lee, Korean J. Chem. Eng., 18, 941 (2001).

    Article  CAS  Google Scholar 

  11. O. Diwald, T. L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck and J. T. Yates, J. Phys. Chem. B, 108, 6004 (2004).

    Article  CAS  Google Scholar 

  12. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Appl. Catal. A-Gen., 265, 115 (2004).

    Article  CAS  Google Scholar 

  13. A. Kudo and Y. Miseki, Chem. Soc. Rev., 38, 253 (2009).

    Article  CAS  Google Scholar 

  14. K. Kalyanasundaram, E. Borgarello, D. Duonghong and M. Gratzel, Angew. Chem. Int. Ed., 20, 987 (1981).

    Article  Google Scholar 

  15. H. Matsumoto, T. Sakata, H. Mori and H. Yoneyama, J. Phys. Chem., 100, 13781 (1996).

    Article  CAS  Google Scholar 

  16. E. Hong, J. Kim, S. Yu and J. Kim, Korean J. Chem. Eng., 28, 1684 (2011).

    Article  CAS  Google Scholar 

  17. H.B. Fu, T. G. Xu, S. B. Zhu and Y. F. Zhu, Environ. Sci. Technol., 42, 8064 (2008).

    Article  CAS  Google Scholar 

  18. L. L. Ma, H. Z. Sun, Y. G. Zhang, Y. L. Lin, J. L. Li, K.W.Y. Yu, Y. Yu, M. Tan and J. B. Wang, Nanotechnology, 19 (2008).

  19. X. L. Nie, S. H. Wei and S. B. Zhang, Phys. Rev. B, 65 (2002).

    Google Scholar 

  20. Y. Jiang, H. K. Yuan and H. Chen, Phys. Chem. Chem. Phys., 17, 630 (2015).

    Article  CAS  Google Scholar 

  21. X.G. Yan, L. Xu, W.Q. Huang, G.F. Huang, Z.M. Yang, S.Q. Zhan and J. P. Long, Mater. Sci. Semicond. Process., 23, 34 (2014).

    Article  CAS  Google Scholar 

  22. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, J. Electrochem. Soc., 147, 486 (2000).

    Article  Google Scholar 

  23. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo and K. Domen, Chem. Commun., 357 (1998).

    Google Scholar 

  24. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, Texas (1974).

    Google Scholar 

  25. S. Kakuta and T. Abe, Electrochem. Solid State Lett., 12, P1 (2009).

    Google Scholar 

  26. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley and M. Gratzel, Energy Environ. Sci., 5, 8673 (2012).

    Article  CAS  Google Scholar 

  27. C. M. Wang and C. Y. Wang, J. Nanophoton., 8 (2014).

    Google Scholar 

  28. L. I. Bendavid and E.A. Carter, J. Phys. Chem. B, 117, 15750 (2013).

    Article  CAS  Google Scholar 

  29. Y. Kwon, A. Soon, H. Han and H. Lee, J. Mater. Chem. A, 3, 156 (2015).

    Article  CAS  Google Scholar 

  30. X.D. Liang, L. Gao, S.W. Yang, and J. Sun, Adv. Mater., 21, 2068 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwoo Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Lee, H. Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting. Korean J. Chem. Eng. 32, 2429–2433 (2015). https://doi.org/10.1007/s11814-015-0063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0063-5

Keywords

Navigation