Skip to main content

Advertisement

Log in

Towards sustainable energy. Photocatalysis of Cr-doped TiO2: 4. Electrochemical coupling

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present chain of five papers considers the concept of solar-to-chemical energy conversion using TiO2-based semiconductors. The series reports the effect of chromium on the key performance-related properties of polycrystalline TiO2 (rutile), including electronic structure, photocatalytic activity, intrinsic defect disorder, electrochemical coupling and surface versus bulk properties. This work reports the effect of photoelectrochemical coupling of both pure and Cr-doped TiO2 on photocatalytic partial water oxidation. The couples are annealed in oxidising and reducing conditions, at p(O2) = 105 Pa and p(O2) = 10−10 Pa, respectively. The performance of the coupled system may be enhanced, or retarded, by the electrical potential barrier that is formed between the couple components as a result of the difference in Fermi levels. In this work, we show that the potential barrier results in the effect of synergy when the charge transport within the couple components is high enough. This is the case for the couples annealed in reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee JS, You KH, Park CB (2012) Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene. Adv Mater 24(8):1084–1088

  2. Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271

  3. Chen D, Jiang Z, Geng J, Wang Q and Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741–2746

  4. Bak T, Nowotny J, Sucher N J and Wachsman E (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (Rutile) with oxygen, water, and bacteria. J Phys Chem C 115(32):15711–15738

  5. Chandrasekharan N, Kamat PV (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104(46):10851–10857

  6. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126(15):4943–4950

  7. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129(15):4538–4539

  8. Wang X, Yu JC, Yip HY, Wu L, Wong PK, Lai SY (2005) A mesoporous Pt/TiO2 nano-architecture with catalytic and photocatalytic functions. Chem Eur J 11(10):2997–3004

  9. Chen T, Feng Z, Wu G, Shi J, Ma G, Ying P, Li C (2007) Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO by in situ Fourier transform IR and time-resolved IR spectroscopy. J Phys Chem C 111(22):8005–8014

  10. Zou J-J, He H, Cui L, Du H-Y (2007) Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method. Int J Hydrog Energy 32.12(2007):1762–1770

  11. Ranjit K, Varadarajan TK, Viswanathan B (1995) Photocatalytic reduction of nitrite and nitrate ions to ammonia on Ru/TiO2 catalysts. J Photochem Photobiol A 89(1):67–68

  12. Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol−gel method. Environ Sci Technol 43(8):2905–2910

  13. Zhong JB, Lu Y, Jiang WD, Meng QM, He XY, Li JZ, Chen YQ (2009) Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. J Hazard Mater 168(2):1632–1635

  14. Chen P, Lu J, Xie G, Zhu L, Luo M (2012) Characterizations of Ir/TiO2 catalysts with different Ir contents for selective hydrogenation of crotonaldehyde. React Kinet Mech Catal 106(2):419–434

  15. DohĿeviĿ-MitroviĿ Z, StojadinoviĿ S, Lozzi L, AškrabiĿ S, RosiĿ M, TomiĿ N, PaunoviĿ N, LazoviĿ S, NikoliĿ MG, Santucci S (2016) WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Mater Res Bull 83:217–224

  16. Kim H-M, Kim D, Kim B (2015) Photoinduced hydrophilicity of TiO2/WO3 double layer films. Surf Coat Technol 271:18–21

  17. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45(6):557–566

  18. Pan X, Xu Y-J (2013) Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light. J Phys Chem C 117(35):17996–18005

  19. Wu G, Chen T, Zhou G, Zong X, Li C (2008) H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Sci China Ser B Chem 51.2(2008):97–100

  20. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber J (2006) UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol A Chem 183(1):218–224

  21. Tristão JC, Magalhães F, Corio P, Sansiviero MTC (2006) Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J Photochem Photobiol A Chem 181(2):152–157

  22. Wu L, Jimmy CY, Fu X (2006) Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J Mol Catal A Chem 244(1):25–32

  23. Yu C, Wei L, Chen J, Xie Y, Zhou W, Fan Q (2014) Enhancing the photocatalytic performance of commercial TiO2 crystals by coupling with trace narrow-band-gap Ag2CO3. Ind Eng Chem Res 53(14):5759–5766

  24. Hao D, Yang Z, Jiang C, Zhang J (2013) Photocatalytic activities of TiO2 coated on different semiconductive SiC foam supports. J Mater Sci Technol 29(11):1074–1078

  25. Zhang Y, Xu Y, Li T, Wang Y (2012) Preparation of ternary Cr2O3–SiC–TiO2 composites for the photocatalytic production of hydrogen. Particuology 10(1):46–50

  26. Hattori A, Tokihisa Y, Tada H, Ito S (2000) Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 Bilayer-Type Catalyst. J Electrochem Soc 147(6):2279–2283

  27. Cao Y, Zhang X, Yang W, Du H, Bai Y, Li T, Yao J (2000) A bicomponent TiO2/SnO2 particulate film for photocatalysis. Chem Mater 12(11):3445–3448

  28. Jun TH, Lee K-S, Song HS (2012) Hydrophilicity of anatase TiO2/Cr-doped TiO2 thin films with different band gaps. Thin Solid Films 520(7):2609–2612

  29. Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017a) Toward sustainable energy: photocatalysis of Cr-doped TiO2: 1. Electronic structure, Ionics. https://doi.org/10.1007/s11581-017-2369-2

  30. Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017b) Towards sustainable energy: photocatalysis of Cr-doped TiO2. 2. Effect of defect disorder, Ionics. https://doi.org/10.1007/s11581-017-2370-9

  31. Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2017c) Towards sustainable energy:photocatalysis of Cr-doped TiO2. 3. Effect of oxygen activity, Ionics. https://doi.org/10.1007/s11581-017-2304-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nowotny.

Additional information

New insight

1. Assembling the oxide phases of different Fermi levels, forming electrochemical cascades, leads to imposition of an electrical potential barrier across the junction that acts as an electrochemical pump of the light-induced electronic charge carriers.

2. The electrochemical couples (cascades) formed of the same oxide material, such as TiO2, allow efficient charge transfer across the interphase in the desired direction.

3. The electrochemical couples formed of pure and Cr-doped TiO2 exhibit a synergy effect after annealing in reducing conditions when the system is remote from the n-p transition point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, K.A., Atanacio, A., Ionescu, M. et al. Towards sustainable energy. Photocatalysis of Cr-doped TiO2: 4. Electrochemical coupling. Ionics 24, 873–881 (2018). https://doi.org/10.1007/s11581-017-2305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2305-5

Keywords

Navigation