Skip to main content
Log in

Efficient removal of crystal violet and eosin B from aqueous solution using Syzygium cumini leaves: A comparative study of acidic and basic dyes on a single adsorbent

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorption capabilities of Syzygium cumini leaves were investigated for crystal violet and eosin B using batch adsorption method. Removal conditions were optimized by varying operational parameters like pH, dose of adsorbent, contact time and temperature. Presence of salts had a profound effect on the adsorption and the experimental data for both adsorbates, providing good correlation with the Temkin, Langmuir and Freundlich patterns, but differing from Dubinin-Radushkevich model. Maximum adsorption capacity was found to be 38.75 mg/g for crystal violet and 16.28mg/g for eosin B respectively. Boyd-Adamson-Myers, Morris-Weber and Bangham’s surface mass transport models revealed that film diffusion was the rate controlling process and followed pseudo-second order kinetics. Activation energy was estimated to be 57.265 and 6.721 kJ/mol for crystal violet and eosin B respectively. Adsorption of crystal violet is endothermic and that of Eosin B is exothermic but both were spontaneous at all temperatures. To study the bulk removal of the dyes, column operations were made. The exhausted columns were regenerated by eluting HCl solution and almost 91.94% of CV and 58.08% of EB were recovered from columns, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Puzyn, Organic pollutants ten years after the stockholm convention- environmental and analytical update, InTech, Rijeka (2012).

    Book  Google Scholar 

  2. T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001).

    Article  CAS  Google Scholar 

  3. M. A. Mottaleb and D. Littlejohn, Anal. Sci., 17, 429 (2001).

    Article  CAS  Google Scholar 

  4. A. Baban, A. Yediler and N. K. Ciliz, Clean: Soil, Air, Water, 38, 84 (2010).

    CAS  Google Scholar 

  5. S. Wang, Y. Boyjoo, A. Choueib and Z. H. Zhu, Water Res., 39, 129 (2005).

    Article  CAS  Google Scholar 

  6. O. J. Hao, H. Kim and P.-C. Chiang, Crit. Rev. Env. Sci. Technol., 30, 449 (2000).

    Article  CAS  Google Scholar 

  7. N. Willmott, J. Guthrie and G. Nelson, J. Soc. Dyers Colour., 114, 38 (1998).

    Article  CAS  Google Scholar 

  8. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard. Mater., 177, 70 (2010).

    Article  CAS  Google Scholar 

  9. C.R. Silva, T.F. Gomes, G.C.R.M. Andrade, S.H. Monteiro, A.C.R. Dias, E. A. G. Zagatto and V. L. Tornisielo, J. Agric. Food Chem., 61, 2358 (2013).

    Article  CAS  Google Scholar 

  10. C. G. Rocha, D. A. M. Zaia, R.V. d. S. Alfaya and A. A. d. S. Alfaya, J. Hazard. Mater., 166, 383 (2009).

    Article  CAS  Google Scholar 

  11. M. Arami, N.Y. Limaee, N. M. Mahmoodi and N. S. Tabrizi, J. Colloid Interface Sci., 288, 371 (2005).

    Article  CAS  Google Scholar 

  12. E. Rubin, P. Rodriguez, R. Herrero, J. Cremades, I. Barbara and M.E. Sastre de Vicente, J. Chem. Technol. Biotechnol., 80, 291 (2005).

    Article  CAS  Google Scholar 

  13. N. S. Maurya, A. K. Mittal, P. Cornel and E. Rother, Bioresour. Technol., 97, 512 (2006).

    Article  CAS  Google Scholar 

  14. K.S. Low, C.K. Lee and L.L. Heng, Environ. Technol., 15, 115 (1994).

    Article  CAS  Google Scholar 

  15. Y.S. Ho, D.A. J. Wase and C.F. Forster, Environ. Technol., 17, 71 (1996).

    Article  CAS  Google Scholar 

  16. W. Zou, H. Bai, S. Gao and K. Li, Korean J. Chem. Eng., 30, 111 (2013).

    Article  CAS  Google Scholar 

  17. G. Mishra and M. A. Tripathy, Colourage, 40, 35 (1993).

    CAS  Google Scholar 

  18. C. Moran, M. E. Hall and R. Howell, J. Soc. Dyers Colour., 113, 272 (1997).

    Article  CAS  Google Scholar 

  19. F. Akbal, J. Colloid Interface Sci., 286, 455 (2005).

    Article  CAS  Google Scholar 

  20. S. Chakraborty, S. Chowdhury and P. Das Saha, Carbohydr. Polym., 86, 1533 (2011).

    Article  Google Scholar 

  21. K. J. Laidler, Chemical kinetics, Harper & Row, New York (1987).

    Google Scholar 

  22. M.M. Dubinin and L.V. Radushkevich, Chem. Zentr, 1, 875 (1947).

    Google Scholar 

  23. M. Akhtar, M. I. Bhanger, S. Iqbal and S.M. Hasany, J. Hazard. Mater., 128, 44 (2006).

    Article  CAS  Google Scholar 

  24. H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  25. M. I. Temkin and V. Pyzhev, Acta Physiochem (URSS), 12, 327 (1940).

    CAS  Google Scholar 

  26. A. Buasri, N. Chaiyut, K. Tapang, S. Jaroensin and S. Panphrom, Int. J. Env. Sci. Dev., 3, 10 (2012).

    Article  CAS  Google Scholar 

  27. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  28. G. McKay, H. S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 29, 1499 (1984).

    Article  CAS  Google Scholar 

  29. Z. Zawani, A. L. Chuah and T. S.Y. Choong, Eur. J. Sci. Res., 37, 63 (2009).

    Google Scholar 

  30. S. Lagergren, K. Svenska Vetenskapsakad. Handl., 24, 1 (1898).

    Google Scholar 

  31. M.A. Abd El-Ghaffar, M. H. Mohamed and K. Z. Elwakeel, Chem. Eng. J., 151, 30 (2009).

    Article  CAS  Google Scholar 

  32. Y. S. Ho and G. McKay, Process Biochem. (Amsterdam, Neth.), 34, 451 (1999).

    CAS  Google Scholar 

  33. F.-C. Wu, R.-L. Tseng, S.-C. Huang and R.-S. Juang, Chem. Eng. J., 151, 1 (2009).

    Article  CAS  Google Scholar 

  34. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div. ASCE, 89, 31 (1963).

    Google Scholar 

  35. G.E. Boyd, A.W. Adamson and L. S. Myers, J. Am. Chem. Soc., 69, 2836 (1947).

    Article  CAS  Google Scholar 

  36. D. Reichenberg, J. Am. Chem. Soc., 75, 589 (1953).

    Article  CAS  Google Scholar 

  37. D. H. Bangham and F. P. Burt, Proc. R. Soc. A., 105, 481 (1924).

    Article  CAS  Google Scholar 

  38. M. Mufazzal Saeed, S. Moosa Hasany and M. Ahmed, Talanta, 50, 625 (1999).

    Article  CAS  Google Scholar 

  39. K. Rao, S. Anand and P. Venkateswarlu, Korean J. Chem. Eng., 27, 1547 (2010).

    Article  CAS  Google Scholar 

  40. A. Saeed, M. Sharif and M. Iqbal, J. Hazard. Mater., 179, 564 (2010).

    Article  CAS  Google Scholar 

  41. S. Jain and R. V. Jayaram, Desalination, 250, 921 (2010).

    Article  CAS  Google Scholar 

  42. D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York (1984).

    Google Scholar 

  43. R. Ahmad, J. Hazard. Mater., 171, 767 (2009).

    Article  CAS  Google Scholar 

  44. O. Aksakal and H. Ucun, J. Hazard. Mater., 181, 666 (2010).

    Article  CAS  Google Scholar 

  45. G. Crini, H. N. Peindy, F. Gimbert and C. Robert, Sep. Purif. Technol., 53, 97 (2007).

    Article  CAS  Google Scholar 

  46. Y. S. Ho and C. C. Chiang, Adsorption, 7, 139 (2001).

    Article  CAS  Google Scholar 

  47. J. Mattson and H. Mark, Activated carbon: Surface chemistry and adsorption from solution, Marcel Dekker, Inc., New York (1971).

    Google Scholar 

  48. S. Faust and O. Aly, Adsorption processes for water treatment, Butterworth Publishers, Stoneham (1987).

    Google Scholar 

  49. S. Netpradit, P. Thiravetyan and S. Towprayoon, J. Colloid Interface Sci., 270, 255 (2004).

    Article  CAS  Google Scholar 

  50. R.F.P.M. Moreira, N.C. Kuhnen and M.G. Peruch, Latin. Am. Appl. Res., 28, 37 (1998).

    CAS  Google Scholar 

  51. S. Patil, V. Deshmukh, S. Renukdas and N. Patel, Int. J. Env. Sci., 1, 1116 (2011).

    CAS  Google Scholar 

  52. C. Namasivayam and D. Kavitha, Dyes Pigm., 54, 47 (2002).

    Article  CAS  Google Scholar 

  53. Y. Guo, J. Zhao, H. Zhang, S. Yang, J. Qi, Z. Wang and H. Xu, Dyes Pigm., 66, 123 (2005).

    Article  CAS  Google Scholar 

  54. A.W.M. Ip, J.P. Barford and G. McKay, J. Colloid Interface Sci., 337, 32 (2009).

    Article  CAS  Google Scholar 

  55. Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu and Z. Wu, Chem. Eng. J., 228, 392 (2013).

    Article  CAS  Google Scholar 

  56. M. Alkan, Ö. Demirbas and M. Doğan, Fresenius Environ. Bull., 13, 1112 (2004).

    CAS  Google Scholar 

  57. L.A. Sepulveda and C. C. Santana, Environ. Technol., 34, 967 (2012).

    Article  Google Scholar 

  58. S. Chowdhury and P. Saha, Carbohydr. Polym., 86, 1533 (2011).

    Article  Google Scholar 

  59. Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh and G. M. Walker, Dyes Pigm., 77, 16 (2008).

    Article  CAS  Google Scholar 

  60. C. H. Giles, D. Smith and A. Huitson, J. Colloid Interface Sci., 47, 755 (1974).

    Article  CAS  Google Scholar 

  61. C. Aharoni and D. L. Sparks, Kinetics of Soil Chemical Reactions—A Theoretical Treatment, Rates of Soil Chemical Processes, Sssaspecialpubl, 1 (1991).

    Google Scholar 

  62. P. King, N. Rakesh, S. Beenalahari, Y. Prasanna Kumar and V.S.R.K. Prasad, J. Hazard. Mater., 142, 340 (2007).

    Article  CAS  Google Scholar 

  63. E. Tütem, R. Apak and Ç. F. Ünal, Water Res., 32, 2315 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Mehmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, A., Bano, S., Fahim, A. et al. Efficient removal of crystal violet and eosin B from aqueous solution using Syzygium cumini leaves: A comparative study of acidic and basic dyes on a single adsorbent. Korean J. Chem. Eng. 32, 882–895 (2015). https://doi.org/10.1007/s11814-014-0308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0308-8

Keywords

Navigation