Skip to main content
Log in

Monte Carlo simulation of free energy for the solid-liquid equilibrium of methane

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The thermodynamic properties of methane, particularly for solid-liquid equilibrium, are calculated by Monte Carlo simulation. For various potential models of methane, we explicitly calculated free energies and chemical potentials of the solid and liquid phases of methane by using the expanded ensemble method and the thermodynamic integration method. The Einstein-molecule method combined with the expanded ensemble method is used for the solid phase, and thermodynamic integration for the liquid phase. Coexistence properties such as melting temperature, entropy change and enthalpy change of melting are predicted and compared with experiment. Among the potential models studied, the OPLS-AA model shows the best performance in predicting the solid-liquid coexistence properties of methane. The melting temperature at zero pressure is predicted to be 92.6 K, in good agreement with the experimental value of 90.6 K. While other all-atom potential models reasonably predict the density of solid methane within an error of 5%, they tend to underestimate the melting temperature. The OPLS-AA potential model yields the most accurate value for the entropy change of melting, predicted to be 8.71 J/mol·K. This is within an error of 16%, compared to the experimental value of 10.4 J/mol·K. Also, the enthalpy change of melting is predicted to be 0.81 kJ/mol with an error of 14%, compared to the experimental value of 0.94 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Press, J. Chem. Phys., 56, 2597 (1972).

    CAS  Google Scholar 

  2. M. M. Thiéry, D. Fabre and K. Kobashi, J. Chem. Phys., 83, 6165 (1985).

    Article  Google Scholar 

  3. P. Hebert, A. Polian, P. Loubeyre and R. Le Toullec, Phys. Rev. B, 36, 9196 (1987).

    Article  CAS  Google Scholar 

  4. R. Bini, L. Ulivi, H. J. Jodl and P.R. Salvi, J. Chem. Phys., 103, 1353 (1995).

    Article  CAS  Google Scholar 

  5. R. Bini and G. Pratesi, Phys. Rev. B, 55, 14800 (1997).

    Article  CAS  Google Scholar 

  6. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry.

  7. D. G. Bounds, M. L. Klein and G. N. Patey, J. Chem. Phys., 72, 5348 (1980).

    Article  CAS  Google Scholar 

  8. D. E. Williams, J. Chem. Phys., 47, 4680 (1967).

    CAS  Google Scholar 

  9. R. Righini, K. Maki and M. L. Klein, Chem. Phys. Lett., 80, 301 (1981).

    Article  CAS  Google Scholar 

  10. S. M. El-Sheikh, K. Barakat and N. M. Salem, J. Chem. Phys., 124, 124517 (2006).

    Article  CAS  Google Scholar 

  11. S. Fitzwater and L. S. Bartell, J. Am. Chem. Soc., 98, 5107 (1976).

    Article  CAS  Google Scholar 

  12. M. Schoen, C. Hoheisel and O. Beyer, Mol. Phys., 58, 699 (1986).

    Article  CAS  Google Scholar 

  13. B. Saager and J. Fischer, Fluid Phase Equilib., 57, 35 (1990).

    Article  CAS  Google Scholar 

  14. J. Nagy, D. F. Weaver and V. H. Smith Jr., J. Phys. Chem., 99, 8058 (1995).

    Article  CAS  Google Scholar 

  15. H. Stassen, J. Mol. Struct.: THEOCHEM, 464, 107 (1999).

    CAS  Google Scholar 

  16. S. Murad, K.E. Gubbins and P. Lykos, in ACS Symp. Ser., 62 (1978).

    Google Scholar 

  17. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, J. Am. Chem. Soc., 118, 11225 (1996).

    Article  CAS  Google Scholar 

  18. A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov and P. N. Vorontsov-Velyaminov, J. Chem. Phys., 96, 1776 (1992).

    Article  CAS  Google Scholar 

  19. C. Vega and E. G. Noya, J. Chem. Phys., 127, 154113 (2007).

    Article  Google Scholar 

  20. D. Frenkel and B. Smit, Understanding Molecular Simulations, 2nd Ed., Academic Press, USA (2002).

    Google Scholar 

  21. D. A. Kofke, J. Chem. Phys., 98, 4149 (1993).

    CAS  Google Scholar 

  22. M.G. Martin and J. I. Siepmann, J. Phys. Chem. B, 102, 2569 (1998).

    Article  CAS  Google Scholar 

  23. M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182 (1981).

    Article  CAS  Google Scholar 

  24. S. Yashonath and C.N. R. Rao, Mol. Phys., 54, 245 (1985).

    Article  CAS  Google Scholar 

  25. M. Kim, J. Chang and S. I. Sandler, J. Chem Phys., 140, 084110 (2014).

  26. D. Frenkel and A. J. C. Ladd, J. Chem. Phys., 81, 3188 (1984).

    Article  CAS  Google Scholar 

  27. J.M. Polson, E. Trizac, S. Pronk and D. Frenkel, J. Chem. Phys., 112, 5339 (2000).

    Article  CAS  Google Scholar 

  28. N. G. Almarza, J. Chem. Phys., 126, 211103 (2007).

    Article  CAS  Google Scholar 

  29. L. A. Báez and P. Clancy, Mol. Phys., 86, 385 (1995).

    Article  Google Scholar 

  30. M. J. Vlot, J. Huinink and J. P. van der Eerden, J. Chem. Phys., 110, 55 (1999).

    Article  CAS  Google Scholar 

  31. J. Chang and S. I. Sandler, J. Chem Phys., 125, 054705 (2006).

  32. D. A. McQuarrie, Statistical Mechanics, Harper and Row, USA (1976).

    Google Scholar 

  33. C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya, J. Phys.: Condens. Matter, 20, 153101 (2008).

    Google Scholar 

  34. G. Perez-Sanchez, D. Gonzalez-Salgado, M. Pineiro and C. Vega, J. Chem. Phys., 138, 084506 (2013).

  35. J. Chang and S. I. Sandler, J. Chem. Phys., 118, 8390 (2003).

    Article  CAS  Google Scholar 

  36. J. Chang and S. I. Sandler, J. Chem Phys., 121, 7474 (2004).

    Article  CAS  Google Scholar 

  37. J. Chang, A.M. Lenhoff and S. I. Sandler, J. Phys. Chem. B, 109, 19507 (2005).

    Article  CAS  Google Scholar 

  38. H. C. Andersen, D. Chandler and J.D. Weeks, J. Chem. Phys, 56, 3812 (1972).

    Article  CAS  Google Scholar 

  39. A. A. Khare and G. C. Rutledge, J. Chem. Phys., 110, 3063 (1999).

    Article  CAS  Google Scholar 

  40. A.A. Khare and G.C. Rutledge, J. Phys. Chem. B, 104, 3639 (2000).

    Article  CAS  Google Scholar 

  41. G.C. Boulougouris, J.R. Errington, I.G. Economou, A. Z. Panagiotopoulos and D.N. Theodorou, J. Phys. Chem. B, 104, 4958 (2000).

    Article  CAS  Google Scholar 

  42. J. Chang, J. Chem. Phys., 131, 074103 (2009).

    Article  Google Scholar 

  43. J. Chang, Korean J. Chem. Eng., 28, 597 (2011).

    Article  CAS  Google Scholar 

  44. D.N. Bol’shutkin, V.M. Gasan and A.I. Prokhvatilov, J. Struct. Chem., 12, 670 (1971).

    Article  Google Scholar 

  45. J. C. Stryland, J. E. Crawford and M. A. Mastoor, Can. J. Phys., 38, 1546 (1960).

    Article  CAS  Google Scholar 

  46. J.D. Grace and G. C. Kennedy, J. Phys. Chem. Solids, 28, 977 (1967).

    Article  CAS  Google Scholar 

  47. T. Yagi and H. Suzuki, Proc. Jpn. Acad B, 66, 167 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeeon Chang.

Additional information

This article is dedicated to Prof. Hwayong Kim on the occasion of his retirement from Seoul National Univerisity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Chang, J. Monte Carlo simulation of free energy for the solid-liquid equilibrium of methane. Korean J. Chem. Eng. 32, 939–949 (2015). https://doi.org/10.1007/s11814-014-0292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0292-z

Keywords

Navigation