Skip to main content
Log in

Expanded ensemble Monte Carlo simulations for the chemical potentials of supercritical carbon dioxide and hydrocarbon solutes

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We carry out expanded ensemble Monte Carlo simulations in order to calculate the chemical potentials of carbon dioxide as solvent and those of hydrocarbons as solutes at supercritical conditions. Recently developed adaptive method is employed to find weight factors during the simulation, which is crucial to achieving high accuracy for free energy calculation. The present simulation method enables us to obtain chemical potentials of large solute molecules dissolved in compressed phase from a single run of simulation. Simulation results for the excess chemical potentials of pure carbon dioxide at 300, 325 and 350 K are compared with experimental data and values predicted by the Peng-Robinson equation of state. A good agreement is found for high pressures up to 500 bar. The chemical potentials of hydrocarbon solutes dissolved in carbon dioxide at infinite dilution are predicted by simulation. Less than eight intermediate subensembles are required to gradually insert (or delete) hydrocarbon solute molecules from methane to noctane into dense CO2 phase of approximately 1.0 g cm−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frenkel and B. Smit, Understanding Molecular Simulations 2nd Ed., Academic, San Diego (2002).

    Google Scholar 

  2. B. Widom, J. Chem. Phys., 39, 2808 (1963).

    Article  CAS  Google Scholar 

  3. R.W. Zwanzig, J. Chem. Phys., 22, 1420 (1954).

    Article  CAS  Google Scholar 

  4. J. G. Kirkwood, J. Chem. Phys., 3, 300 (1935).

    Article  CAS  Google Scholar 

  5. C. H. Bennett, J. Comput. Phys., 22, 245 (1976).

    Article  Google Scholar 

  6. A. P. Lyubartsev, A. A. Martsinovski, S.V. Shevkunov and P. N. Vorontsov-Vel’yaminov, J. Chem. Phys., 96, 1776 (1992).

    Article  CAS  Google Scholar 

  7. A. P. Lyubartsev, A. Laaksonen and P. N. Vorontsov-Velyaminov, Mol. Phys., 82, 455 (1994).

    Article  CAS  Google Scholar 

  8. A. P. Lyubartsev, A. Laaksonen and P. N. Vorontsov-Velyaminov, Mol. Simul., 18, 455 (1996).

    Article  Google Scholar 

  9. A. P. Lyubartsev, S. P. Jacobsson, G. Sundholm and A. Laaksonen, J. Phys. Chem. B, 105, 7775 (2001).

    Article  CAS  Google Scholar 

  10. J. R. Errington, G. C. Boulougouris, I.G. Economou, A. Z. Panagiotopoulos and D. N. Theodorou, J. Phys. Chem. B, 102, 8865 (1998).

    Article  CAS  Google Scholar 

  11. G. C. Boulougouris, J. R. Errington, I.G. Economou, A. Z. Panagiotopoulos and D. N. Theodorou, J. Phys. Chem. B, 104, 4958 (2000).

    Article  CAS  Google Scholar 

  12. A. A. Khare and G. C. Rutledge, J. Chem. Phys., 110, 3063 (1999).

    Article  CAS  Google Scholar 

  13. A. A. Khare and G. C. Rutledge, J. Phys. Chem. B, 104, 3639 (2000).

    Article  CAS  Google Scholar 

  14. K. M. Åberg, A. P. Lyubartsev, S. P. Jacobsson and A. Laaksonen, J. Chem. Phys., 120, 3770 (2004).

    Article  Google Scholar 

  15. J. Chang and S. I. Sandler, J. Chem. Phys., 118, 8390 (2003).

    Article  CAS  Google Scholar 

  16. J. Chang, A. M. Lenhoff and S. I. Sandler, J. Chem. Phys., 120, 3003 (2004).

    Article  CAS  Google Scholar 

  17. J. Chang, A. M. Lenhoff and S. I. Sandler, J. Phys. Chem. B, 109, 19507 (2005).

    Article  CAS  Google Scholar 

  18. J. Chang and S. I. Sandler, J. Chem. Phys., 125, 054705 (2006).

    Article  Google Scholar 

  19. J. Chang, J. Chem. Phys., 131, 074103 (2009).

    Article  Google Scholar 

  20. J. G. Harris and K. H. Yung, J. Phys. Chem., 99 12021 (1995).

    Article  CAS  Google Scholar 

  21. J. Vorholz, V. I. Harismiadis, B. Rumpf, A. Z. Panagiotopoulos and G. Maurer, Fluid Phase Equilibria, 170, 203 (2000).

    Article  CAS  Google Scholar 

  22. M.G. Martin and J. I. Siepmann, J. Phys. Chem. B, 102, 2569 (1998).

    Article  CAS  Google Scholar 

  23. C. D. Wick, M.G. Martin and J. I. Siepmann, J. Phys. Chem. B, 104, 8008 (2000).

    Article  CAS  Google Scholar 

  24. B. Chen, J. J. Potoff and J. I. Siepmann, J. Phys. Chem. B, 105, 3093 (2001).

    Article  CAS  Google Scholar 

  25. E.W. Lemmon, M.O. McLinden and D.G. Friend, “Thermophysical Properties of Fluid Systems” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P. J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov (retrieved April 10, 2010).

  26. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  27. S. I. Sandler, Chemical, Biochemical and Engineering Thermodynamics 4th Ed., John Wiley & Sons (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeeon Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J. Expanded ensemble Monte Carlo simulations for the chemical potentials of supercritical carbon dioxide and hydrocarbon solutes. Korean J. Chem. Eng. 28, 597–601 (2011). https://doi.org/10.1007/s11814-010-0359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0359-4

Key words

Navigation