Skip to main content
Log in

LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Uptake to cuprous oxide (Cu2O) nanoparticle synthesis with various particle sizes and shapes via supersaturation chemistry approach (LaMer model) has been conducted. Ascorbic acid and maltodextrine as reducing agents and polyvinylpyrrolidone (PVP) as a surfactant were utilized for synthesis of Cu2O nanoparticles in aqueous solution. The narrow particle size range was achieved by controlling the kinetics of nucleation and growth of particles to satisfy LaMer theory. This mean was performed utilizing different reducing agents (ascorbic acid and maltodextrin) and also, changing the reducing agent addition condition. The results showed the reducing agent addition condition, varying the size of Cu2O nanoparticles from 89 nm to 74 nm for drop-wisely and at-once routes, respectively. The samples were characterized by XRD, SEM, and UV-Vis spectroscopy. The results indicate the shape of as-prepared cuprous oxide nanoparticles have close relationship with thermodynamic and kinetic conditions, and also reducing addition condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. El-Sayed, Acc. Chem. Res., 37, 326 (2004).

    Article  CAS  Google Scholar 

  2. A. P. Alivisatos, Endeavour, 21, 56 (1997).

    Article  CAS  Google Scholar 

  3. A. P. Alivisatos, Science, 271, 933 (1996).

    Article  CAS  Google Scholar 

  4. Y. Yin and A. P. Alivisatos, Nature, 437, 664 (2005).

    Article  CAS  Google Scholar 

  5. C.B. Murray, S. Sun, H. Doyle and T. Betley, Mater. Res. Bull., 26, 985 (2001).

    Article  CAS  Google Scholar 

  6. X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998).

    Article  CAS  Google Scholar 

  7. S. Mahshid, M. Askari, M. Sasani Ghamsari, N. Afshar and S. Lahuti, J. Alloys Compd., 478, 586 (2009).

    Article  CAS  Google Scholar 

  8. E. E. Finney and R. G. Finke, J. Colloid Interface Sci., 317, 351 (2008).

    Article  CAS  Google Scholar 

  9. R. Rioux (Ed.), Model systems in catalysis: single crystals to supported enzyme mimics, Springer, New York (2010).

    Google Scholar 

  10. J. A. Rodriguez, Synthesis, Properties and applications of oxide nanomaterials, Wiley-VCH, Weinheim (2007).

    Book  Google Scholar 

  11. B. Delmon, G. Ertl, H. Knözinger and J. Weitkamp (Eds.), Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim (1997).

    Google Scholar 

  12. H. H. Kung, Transition metal oxides: surface chemistry and catalysis, Elsevier, Amsterdam (1989).

    Google Scholar 

  13. X. Wang, J.C. Hanson, A. I. Frenkel, J.Y. Kim and J.A. Rodriguez, J. Phys. Chem. B, 108, 13667 (2004).

    Article  CAS  Google Scholar 

  14. A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energy Mater. Sol. Cells, 51, 305 (1998).

    Article  CAS  Google Scholar 

  15. J. T. Zhang, J. F. Liu, Q. Peng, X. Wang and Y. Li, Chem. Mater., 18, 867 (2006).

    Article  CAS  Google Scholar 

  16. Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin and X. Zhang, J. Phys. Chem., 113, 14448 (2009).

    Article  CAS  Google Scholar 

  17. W.C. Huang, L.M. Lyu, Y.C. Yang and M. H. Huang, J. Am. Chem. Soc., 134, 1261 (2012).

    Article  CAS  Google Scholar 

  18. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.M. Taracon, Nature, 407, 496 (2000).

    Article  CAS  Google Scholar 

  19. Y. J. Lee, S. Kim, S. H. Park, H. Park and Y. D. Huh, Mater. Lett., 65, 818 (2011).

    Article  CAS  Google Scholar 

  20. L. Zhang and H. Wang, J. Phys. Chem., 115, 18479 (2011).

    CAS  Google Scholar 

  21. C. Lu, L. Qi, J. Yang, X. Wang, D. Zhang and J. Xie, Adv. Mater., 17, 2562 (2005).

    Article  CAS  Google Scholar 

  22. C. H. Kuo and M.H. Huang, J. Am. Chem. Soc., 130, 12815 (2008).

    Article  CAS  Google Scholar 

  23. Z. C. Orel, A. Anžlovar, G. Draži and M. Zigon, Cryst. Growth Des., 7, 453 (2007).

    Article  CAS  Google Scholar 

  24. P. Grez, F. Herrera, G. Riveros, R. Henríquez, A. Ramírez and E. Muñoz, Mater. Lett., 92, 413 (2013).

    Article  CAS  Google Scholar 

  25. H. Bao, W. Zhang, D. Shang, Q. Hua, Y. Ma and Z. Jiang, J. Phys. Chem., 114, 6676 (2010).

    CAS  Google Scholar 

  26. C. H. Kuo, C. H. Chen and M. H. Huang, Adv. Funct. Mater., 17, 3773 (2007).

    Article  CAS  Google Scholar 

  27. Y. Xu, H. Wang, Y. Yu, L. Tian, W. Zhao and B. Zhang, J. Phys. Chem., 115, 15288 (2011).

    CAS  Google Scholar 

  28. Y. Zhang, B. Deng, T. Zhang, D. Gao and A.W. Xu, J. Phys. Chem., 114, 5073 (2010).

    CAS  Google Scholar 

  29. Z. Zhang, H. Che, Y. Wang, J. Gao, L. Zhao and X. She, Ind. Eng. Chem. Res., 51, 1264 (2012).

    Article  CAS  Google Scholar 

  30. E. Ko, J. Choi, K. Okamoto, Y. Tak and J. Lee, ChemPhysChem, 7, 1505 (2006).

    Article  CAS  Google Scholar 

  31. L. Gou and C. J. Murphy, Nano Lett., 3, 231 (2003).

    Article  CAS  Google Scholar 

  32. V. K. LaMer and R. H. Dinegar, J. Am. Chem. Soc., 72, 4847 (1950).

    Article  CAS  Google Scholar 

  33. T. Sugimoto, J. Colloid Interface Sci., 309, 106 (2007).

    Article  CAS  Google Scholar 

  34. T. Sugimoto, F. Shiba, T. Sekiguchi and H. Itoh, Colloids Surf., A, 164, 183 (2000).

    Article  CAS  Google Scholar 

  35. A.G.V. Poot, G. R. Gattorno, O. E. S. Dominguez, R. T. P. Diaz, M. Pesqueira and G. Oskam, Nanoscale, 2, 2710 (2010).

    Article  Google Scholar 

  36. D. Ma, H. Liu, H. Yang, W. Fu, Y. Zhang, M. Yuan, P. Sun and X. Zhou, Mater. Chem. Phys., 116, 458 (2009).

    Article  CAS  Google Scholar 

  37. R. Viswanatha and D. D. Sarma, Chem. Eur. J., 12, 180 (2006).

    Article  CAS  Google Scholar 

  38. Y. Bai, T. Yang, Q. Gu, G. Cheng and R. Zheng, Powder Technol., 227, 35 (2012).

    Article  CAS  Google Scholar 

  39. L. Wang, G. Wei, B. Qi, H. Zhou, Zh. Liu, Y. Song, X. Ang and H. Li, Appl. Surf. Sci., 252, 2711 (2006).

    Article  CAS  Google Scholar 

  40. G. Gao, H. Wu, R. He and D. Cui, Corros. Sci., 52, 2804 (2010).

    Article  CAS  Google Scholar 

  41. G. Carotenuto, S. Denicola and L. Nicolais, J. Nanopart. Res., 3, 469 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshadi, S., Moghaddam, J. & Eskandarian, M. LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory. Korean J. Chem. Eng. 31, 2020–2026 (2014). https://doi.org/10.1007/s11814-014-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0130-3

Keywords

Navigation