Skip to main content
Log in

Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Present work involves synthesis of NiO nanoparticles using chemical homogeneous precipitation (CHP) method as a facile procedure. Ammonia as a complex agent was used in this method. Effects of different types of complexation-precipitation methods on the crystallinity and morphology of nanoparticles were investigated. NiO particles were prepared by direct precipitation method from NiSO4 solution to compare crystallinity and morphology of NiO particles with particles obtained via complexation-precipitation methods. Our major intent was to investigate the effect of complex agent on the crystallization and growth of NiO nanoparticles. Results showed that the best condition for synthesizing spherical NiO shape was using NaOH as decomposing agent, of which the consequence was more uniformity and spherical nanoparticles with a diameter in the range of 40–60 nm. The size of the nickel oxide and nickel hydroxide nanoparticles was estimated by X-ray powder diffraction (XRD) pattern. The chemical structure information of the particles was studied by Fourier transform infrared (FT-IR) spectroscopy. Spherical, elliptical, sheet or flowerlike shapes were detected by field emission scanning electron microscopy (FESEM) analysis. Results showed that by the use of ammonia as complex agent, crystalline state and particles size distribution of NiO nanoparticles improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Moghaddam, S. Kolahgar-Azari and S. Karimi, Ind. Eng. Chem. Res., 51, 3224 (2012).

    Article  CAS  Google Scholar 

  2. Y. He, K. Vinodgopal, M. Ashokkumar and F. Grieser, Res. Chem. Intermed., 32, 709 (2006).

    Article  CAS  Google Scholar 

  3. R.M. Kassab, K. T. Jackson, O. M. El-Kadri and H.M. El-Kaderi, Res. Chem. Intermed., 37, 747 (2011).

    Article  CAS  Google Scholar 

  4. D. Adler and J. J. Feinleib, Phys. Rev. B: Condens. Matter, 2, 3112 (1970).

    Article  Google Scholar 

  5. I. Hotovy, J. Huran, L. Spiess, S. Hascik and V. Tehacek, Sens. Actuators, B, 57, 147 (1999).

    Article  CAS  Google Scholar 

  6. E. L. Miller and R. E. Rocheleau, J. Electrochem. Soc., 144, 3072 (1997).

    Article  CAS  Google Scholar 

  7. Y. P. Wang, J.W. Zhu, X. J. Yang, L.D. Lu and X. Wang, Thermochim. Acta, 437, 106 (2005).

    Article  CAS  Google Scholar 

  8. R. C. Makkus, K. Hemmes and J. H.W. D. Wir, J. Electrochem. Soc., 141, 3429 (1994).

    Article  CAS  Google Scholar 

  9. M. Ghosh, K. Biswas, A. Sundaresan and C. N. R. Rao, J. Mater. Chem., 16, 106 (2006).

    Article  CAS  Google Scholar 

  10. X. Wang, L. J. Ye, P. Hu and F. L. Yuan, Cryst. Growth Des., 7, 2415 (2007).

    Article  CAS  Google Scholar 

  11. C.N. Huang, S.Y. Chen and P. Shen, J. Phys. Chem. C, 111, 3322 (2007).

    Article  CAS  Google Scholar 

  12. B. Zhao, X. K. Ke and J. H. Bao, J. Phys. Chem. C, 113, 14440 (2009).

    Article  CAS  Google Scholar 

  13. M. S. Wu and H. H. Hsieh, Electrochim. Acta, 53, 3427 (2008).

    Article  CAS  Google Scholar 

  14. J. R. A. Sietsma, J. D. Meeldijk, J. P. D. Breejen, M. V. Helder, A. J.V. Dillen, P. E. D. Jongh and K. P. D. Jong, Angew. Chem. Int. Ed., 46, 4547 (2007).

    Article  CAS  Google Scholar 

  15. L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, L. Li and L. J. Zhang, J. Solid State Chem., 180, 2095 (2007).

    Article  CAS  Google Scholar 

  16. C. K. Xu, K. Q. Hong, S. Liu, G.H. Wang and X. N. Zhao, J. Cryst. Growth, 255, 308 (2003).

    Article  CAS  Google Scholar 

  17. L. L. Wu, Y. S. Wu, H.Y. Wei, Y. C. Shi and C. X. Hu, Mater. Lett., 58, 2700 (2004).

    Article  CAS  Google Scholar 

  18. M.B. Zheng, J.M. Cao, Y. P. Chen, X. J. Ma, S.G. Deng and J. Tao, Chem. Lett., 34, 1174 (2005).

    Article  CAS  Google Scholar 

  19. W. Xing, F. Li, Z. F. Yan, H.M. Cheng and G.Q. Lu, Int. J. Nanosci., 3, 321 (2004).

    Article  CAS  Google Scholar 

  20. X. M. Liu, X. G. Zhang and S. Y. Fu, Mater. Res. Bull., 41, 620 (2006).

    Article  CAS  Google Scholar 

  21. L.Y. Bai, F. L. Yuan, P. Hu, S.K. Yan, X. Wang and S. H. Li, Mater. Lett., 61, 1698 (2007).

    Article  CAS  Google Scholar 

  22. X.M. Ni, Y. F. Zhang, D.Y. Tian, H.G. Zheng and X.W. Wang, J. Cryst. Growth, 306, 418 (2007).

    Article  CAS  Google Scholar 

  23. A. Al-Hajry, A. Umar, M. Vaseem and M. S. Al-Assiri, Superlattices Microstruct., 44, 216 (2008).

    Article  CAS  Google Scholar 

  24. L. P. Zhu, G. H. Liao, Y. Yang, H.M. Zhao and J.G. Wang, Nanoscale Res. Lett., 4, 550 (2009).

    Article  CAS  Google Scholar 

  25. H. Z. Wang and Y. T. Qian, Cryst. Res. Technol., 45, 545 (2010).

    Article  CAS  Google Scholar 

  26. V. Rehacek, P. Siciliano, S. Capone and L. Spiess, Thin. Solid. Films, 418, 9 (2002).

    Article  Google Scholar 

  27. T.Y. Kim, J.Y. Kim, S. H. Lee, H.W. Shim, S. H. Lee, E. K. Su and K. S. Nahm, Synthetic Met., 144, 61 (2004).

    Article  CAS  Google Scholar 

  28. F. Li, H. Chen, Ch. Wang and K. Hu, J. Electroanal. Chem., 531, 53 (2002).

    Article  CAS  Google Scholar 

  29. S. A. Needham, G. X. Wang and H. K. Liu, J. Power. Sources, 159, 254 (2006).

    Article  CAS  Google Scholar 

  30. M. Gondal, M. Sayeed and Z. Seddigi, J. Hazard. Mater., 155, 83 (2008).

    Article  CAS  Google Scholar 

  31. D. B. Kuang, B. X. Lei, Y. P. Pan, X.Y. Yu and Ch.Y. Su, J. Phys. Chem. C, 113, 5508 (2009).

    Article  CAS  Google Scholar 

  32. Q. Yang, J. Sha, X. Maa and D. Yang, Mater. Lett., 59, 1967 (2005).

    Article  CAS  Google Scholar 

  33. M. Salavati-Niasari, N. Mir and F. Davar, J. Alloy. Compd., 493, 163 (2010).

    Article  CAS  Google Scholar 

  34. V.V. Plashnitsa, V. Gupta and N. Miura, Electrochim. Acta, 65, 6941 (2010).

    Article  CAS  Google Scholar 

  35. X. Y. Deng and Z. Chen, Mater. Lett., 58, 276 (2004).

    Article  CAS  Google Scholar 

  36. P.V. Kamath and G. N. Subbanna, J. Appl. Electrochem., 22, 478 (1992).

    Article  CAS  Google Scholar 

  37. Z. Wei, H. Qiao, H. Yang, C. Zhang and X. Yan, J. Alloy. Compd., 479, 855 (2009).

    Article  CAS  Google Scholar 

  38. B.D. Cullity, Elements of X-ray diffraction, First Ed., Addison Wesley, Massachusetts (1956).

    Google Scholar 

  39. A. D. Paola, E. García-López, G. MarcÌ and L. Palmisano, J. Hazard. Mater., 211–212, 3 (2012).

    Article  CAS  Google Scholar 

  40. Q. S. Song, Y.Y. Li and S. L. I. Chan, J. Appl. Electrochem., 35, 157 (2005).

    Article  CAS  Google Scholar 

  41. C. Xu, K. Hong, Sh. Liu, G. Wang and X. Zhao, J. Cryst. Growth, 255, 308 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, J., Hashemi, E. Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution. Korean J. Chem. Eng. 31, 503–508 (2014). https://doi.org/10.1007/s11814-013-0233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0233-2

Keywords

Navigation