Skip to main content
Log in

Effects of magnetic field on calcium carbonate precipitation: Ionic and particle mechanisms

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

There are two most widely reported mechanisms to study the effect of magnetic fields on calcium carbonate (CaCO3) precipitate, namely ionic and particle mechanisms. The effects are most debatable because they are contrary to each other. This study explored the effects of both mechanisms in CaCO3 deposit and total CaCO3 precipitation using ionic and particle methods. The ionic method showed reductions in CaCO3 deposit and total precipitation rate of CaCO3, whereas the particle method showed the opposite results. The particle number decreased and the average particle diameter of CaCO3 deposit increased in the ionic method. Meanwhile in the particle method, the particle number increased, average particle diameter decreased and particle aggregation of CaCO3 was observed. XRD measurement on all deposits showed that the crystal deposit was mostly of calcite and the traces of vaterite. However, the amount of the crystal in the particle method was observed to be less than that in the ionic method, indicating that CaCO3 deposit was more amorphous. Particle mechanism decreased the Ca2+ ion concentration in solution during magnetization, and ionic mechanism reduced scale (CaCO3) formation after magnetization and separation processes. This method could be applied for decreasing water hardness and prevent the formation of scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Vemeiren, Corros. Technol., 5, 215 (1958).

    Google Scholar 

  2. J. F. Grutsch, USA/USSR symposium of physical mechanical treatment of wastewaters, EPA, Cincinnati, 44 (1977).

    Google Scholar 

  3. J. F. Grutsch and J. W. McClintock, Corrosion and deposit control in alkaline cooling water using magnetic water treatment at Amoco’s largest refinery, Corrosion 84 NACE, New Orleans, pp. 330 (1984).

    Google Scholar 

  4. J. Baker and S. Judd, Water Res., 30(2), 247 (1996).

    Article  CAS  Google Scholar 

  5. J. Oshitani, R. Uehara and K. Higashitani, J. Colloid Interf. Sci., 209, 374 (1999).

    Article  CAS  Google Scholar 

  6. K. W. Busch, M. A. Busch, D. H. Parker, R. E. Darling and J. L. McAtee Jr., Corros. NACE, 42(4), 211 (1986).

    CAS  Google Scholar 

  7. A. D. Kney and S. A. Parsons, Water Res., 40, 517 (2006).

    Article  CAS  Google Scholar 

  8. K. Higashitani, A. Kage, S. Katamura, K. Imai and S. Hatade, J. Colloid Interf. Sci., 156, 90 (1993).

    Article  CAS  Google Scholar 

  9. E. Chibowski, L. Holysz, A. Szcze and M. Chibowski, Colloid. Surf. A: Physicochem. Eng. Aspects, 225, 63 (2003).

    Article  CAS  Google Scholar 

  10. R. A. Barrett and S. A. Parsons, Water Res., 32(3), 609 (1998).

    Article  CAS  Google Scholar 

  11. K. Higashitani and J. Oshitani, J. Colloid and Interface Science, 204, 363 (1998).

    Article  CAS  Google Scholar 

  12. Y. Wang, A. J. Babchin, L. T. Chernyi, R. S. Chow and R. P. Swatzky, Water Res., 31(2), 346 (1997).

    Article  CAS  Google Scholar 

  13. H. E. Lundager Madsen, J. Cryst. Growth, 152, 94 (1995).

    Article  CAS  Google Scholar 

  14. H. E. Lundager Madsen, J. Crystal Growth, 267, 251 (2004).

    Article  CAS  Google Scholar 

  15. Y. M. Wang, R. J. Pugh and E. Forssberg, Colloid Surf. A, 90(2–3), 117 (1994).

    Article  CAS  Google Scholar 

  16. C. Gabrielli, R. Jaouhari, G. Maurin and M. Keddam, Water Res., 35(13), 3249 (2001).

    Article  CAS  Google Scholar 

  17. J. W. Ahn, J. H. Kim, H. S. Park, S. J. Kim, C. H. Jo and H. Kim, Korean J. Chem. Eng., 22, 852 (2005).

    Article  CAS  Google Scholar 

  18. S. Kobe, G. Dražićc, A. C. Cefalas and E. Sarantopoulou, Cryst. Eng., 5, 243 (2002).

    Article  CAS  Google Scholar 

  19. S. Knez and P. Ciri, J. Colloid and Interface Science, 281, 377 (2005).

    Article  CAS  Google Scholar 

  20. E. Chibowski, L. Holysz and A. Szczes, Water Research, 37, 4685 (2003).

    Article  CAS  Google Scholar 

  21. N. Abdel-Aal, K. Satoh and K. Sawada, J. Crystal Growth, 245, 87 (2002).

    Article  CAS  Google Scholar 

  22. M. Ben Amor, D. Zgolli, M. M. Tlili and A. S. Manzola, Desalination, 166, 79 (2004).

    Article  Google Scholar 

  23. A. Fathi, M. Tlili, C. Gabrelli, G. Maurin and M. Ben Amor, Water Res., 40, 1941 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Koo Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saksono, N., Gozan, M., Bismo, S. et al. Effects of magnetic field on calcium carbonate precipitation: Ionic and particle mechanisms. Korean J. Chem. Eng. 25, 1145–1150 (2008). https://doi.org/10.1007/s11814-008-0188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0188-x

Key words

Navigation