Skip to main content
Log in

Radial Toeplitz Operators on the Fock Space and Square-Root-Slowly Oscillating Sequences

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we show that the C*-algebra generated by radial Toeplitz operators with \(L_{\infty }\)-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra of bounded sequences uniformly continuous with respect to the square-root-metric \(\rho (j,k)=|\sqrt{j}-\sqrt{k}\,|\). More precisely, we prove that the sequences of eigenvalues of radial Toeplitz operators form a dense subset of the latter C*-algebra of sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abreu, L.D., Faustino, N.: On Toeplitz operators and localization operators. Proc. Am. Math. Soc. 143, 4317–4323 (2015). doi:10.1090/proc/12211

    Article  MathSciNet  MATH  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math. 3, 187–214 (1961). doi:10.1002/cpa.3160140303

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, W., Herrera Yañez, C., Vasilevski, N.: Eigenvalue characterization of radial operators on weighted Bergman spaces over the unit ball. Integr. Equ. Oper. Theory 78(2), 271–300 (2014). doi:10.1007/s00020-013-2101-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, W., Issa, H.: Commuting Toeplitz operators with quasi-homogeneous symbols on the Segal–Bargmann space. J. Math. Anal. Appl. 386, 213–235 (2012). doi:10.1016/j.jmaa.2011.07.058

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauer, W., Le, T.: Algebraic properties and the finite rank problem for Toeplitz operators on the Segal–Bargmann space. J. Funct. Anal. 261, 2617–2640 (2011). doi:10.1016/j.jfa.2011.07.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezin, F.A.: General concept of quantization. Comm. Math. Phys. 40, 153–174 (1975). doi:10.1007/BF01609397

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68, 273–299 (1986). doi:10.1016/0022-1236(86)90099-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal–Bargmann space. Trans. Am. Math. Soc. 2, 813–829 (1987). doi:10.2307/2000671

    Article  MathSciNet  MATH  Google Scholar 

  9. Coburn, L.A.: Deformation estimates for the Berezin–Toeplitz quantization. Commun. Math. Phys. 149, 415–424 (1992). http://projecteuclid.org/euclid.cmp/1104251229

  10. Engliš, M.: Toeplitz operators and group representations. J. Fourier Anal. Appl. 13, 243–265 (2007). doi:10.1007/s00041-006-6009-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Esmeral, K., Maximenko, E.A.: \(C^{*}\)-algebra of angular Toeplitz operators on Bergman spaces over the upper half-plane. Commun. Math. Anal. 17(2), 151–162 (2014). http://projecteuclid.org/euclid.cma/1418919761

  12. Fock, V.A.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932). doi:10.1007/BF01344458

    Article  MATH  Google Scholar 

  13. Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  14. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, New Jersey (1989)

    Book  MATH  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  16. Grudsky, S., Karapetyants, A., Vasilevski, N.: Dynamics of properties of Toeplitz operators with radial symbols. Integr. Equ. Oper. Theory 20, 217–253 (2004). doi:10.1007/s00020-003-1295-z

    Article  MathSciNet  MATH  Google Scholar 

  17. Grudsky, S.M., Maximenko, E.A., Vasilevski, N.L.: Radial Toeplitz operators on the unit ball and slowly oscillating sequences. Commun. Math. Anal. 14(2), 77–94 (2013). http://projecteuclid.org/euclid.cma/1356039033

  18. Grudsky, S., Vasilevski, N.: Toeplitz operators on the Fock space: radial component effects. Integr. Equ. Oper. Theory 44, 10–37 (2002). doi:10.1007/BF01197858

    Article  MathSciNet  MATH  Google Scholar 

  19. Herrera Yañez, C., Hutník, O., Maximenko, E.A.: Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions. C. R. Acad. Sci. Paris Ser. I 352, 129–132 (2014). doi:10.1016/j.crma.2013.12.004

  20. Herrera Yañez, C., Maximenko, E.A., Vasilevski, N.L.: Radial Toeplitz operators revisited: discretization of the vertical case. Integr. Equ. Oper. Theory 81, 49–60 (2015). doi:10.1007/s00020-014-2213-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II. A Serie of Comprehensive Studies in Mathematics. Springer, Berlin (1970)

    Google Scholar 

  22. Isralowitz, J., Zhu, K.: Toeplitz operators on Fock spaces. Integr. Equ. Oper. Theory 66, 593–611 (2010). doi:10.1007/s00020-010-1768-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang, S.: Undergraduate Analysis. In series: Undergraduate Texts in Mathematics., 2nd edn. Springer, New York (2005)

  24. Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. In series: Graduate Studies in Mathematics, vol. 201. American Mathematical Society, Providence (2002)

  25. Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups, 2nd edn. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  26. Segal, I.E.: Lectures at the summer seminar on Applied Math. Boulder, Colorado (1960)

    Google Scholar 

  27. Suárez, D.: The eigenvalues of limits of radial Toeplitz operators. Bull. Lond. Math. Soc. 40, 631–641 (2008). doi:10.1112/blms/bdn042

    Article  MathSciNet  MATH  Google Scholar 

  28. Vasilevski, N.L.: Commutative Algebras of Toeplitz Operators on the Bergman Space. Operator Theory: Advances and Applications, vol. 185. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  29. Zorboska, N.: The Berezin transform and radial operators. Proc. Am. Math. Soc. 131, 793–800 (2003). http://www.jstor.org/stable/1194482

  30. Zhu, K.: Analysis on Fock Spaces. In series: Graduate Texts in Mathematics, vol. 263. Springer, New York (2012)

Download references

Acknowledgments

The authors are grateful to Professor Nikolai Vasilevski for introducing to us the world of commutative C*-algebras of Toeplitz operators. Many ideas used in the proofs come from our joint papers with Crispin Herrera Yañez, Ondrej Hutník, and Nikolai Vasilevski. The authors were partially supported by Universidad de Sucre (Colombia), by CONACYT Project 238630 (Mexico) and by the project IPN-SIP 2016-0733 (Mexico). The authors wish to express our gratitude to the referee for some helpful comments and suggestions. In particular, we included the simplified proof of Lemma 2.4 purposed by the referee (our original proof was more complicated).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Esmeral.

Additional information

Communicated by Christian Le Merdy.

The work on the paper was partically supported by Universidad de Sucre (Colombia), by CONACYT Project 238630 (Mexico) and by IPN-SIP Project 20160733 (Mexico).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmeral, K., Maximenko, E.A. Radial Toeplitz Operators on the Fock Space and Square-Root-Slowly Oscillating Sequences. Complex Anal. Oper. Theory 10, 1655–1677 (2016). https://doi.org/10.1007/s11785-016-0557-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-016-0557-0

Keywords

Mathematics Subject Classification

Navigation