Skip to main content
Log in

Morse–Floer theory for superquadratic Dirac equations, I: relative Morse indices and compactness

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper and its sequel (Isobe in Morse–Floer theory for superquadratic Dirac equations, II: construction and computation of Morse–Floer homology, 2016), we study Morse–Floer theory for superquadratic Dirac functionals associated with a class of nonlinear Dirac equations on compact spin manifolds. We are interested in two topics: (i) relative Morse indices and its relation to compactness issues of critical points; (ii) construction and computation of the Morse–Floer homology and its application to the existence problem for solutions to nonlinear Dirac equations. In this part I, we focus on the topic (i). One of our main results is a compactness of critical points under the boundedness assumption of their relative Morse indices which is an analogue of the results of Bahri–Lions (Commun Pure Appl Math 45:1205–1215, 1992) and Angenent–van der Vorst (Math Z 231: 203–248, 1999) for Dirac functionals. To prove this, we give an appropriate definition of relative Morse indices for bounded solutions to \(\mathsf {D}_{g_{\mathbb {R}^{m}}}\psi =|\psi |^{p-1}\psi \) on \(\mathbb {R}^{m}\). We show that for \(m\ge 3\) and \(1<p<\frac{m+1}{m-1}\), the relative Morse index of any non-trivial bounded solution to that equation is \(+\infty \). We also give some useful properties of the relative Morse indices of Dirac functionals which will be used in the study of the topic (ii) above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A.: A new cohomology for the Morse theory of strongly indefinite functionals on Hilbert space. Top. Methods Nonlinear Anal. 9, 325–382 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbondandolo, A.: Morse Theory for Hamiltonian Systems, vol. 425. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  3. Abbondandolo, A., Majer, P.: Morse homology on Hilbert spaces. Commun. Pure Appl. Math. 54, 689–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abbondandolo, A., Majer, P.: Ordinary differential operators in Hilbert spaces and Fredholm pairs. Math. Z. 243, 525–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abbondandolo, A., Majer, P.: A Morse complex for infinite dimensional manifolds—part I. Adv. Math. 197, 321–410 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abbondandolo, A., Majer, P.: Lectures on the Morse Complex for Infinite-dimensional Manifolds. Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology. Springer, Netherlands (2006)

    MATH  Google Scholar 

  7. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  8. Ammann, B.: A Variational Problem in Conformal Spin Geometry. Universität Hamburg, Habilitationsschift (2003)

    MATH  Google Scholar 

  9. Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Commun. Anal. Geom. 17, 429–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ammann, B., Ginoux, N.: Dirac-harmonic maps from index theory. Calc. Var. 47, 739–762 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ammann, B., Ginoux, N.: Examples of Dirac-harmonic maps after Jost–Mo–Zhu. (2011). http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/ammann/preprints/diracharm/diracharm_JostMoZhu09.pdf (preprint)

  12. Ammann, B., Moroianu, A., Moroianu, S.: The Cauchy problems for Einstein metrics and parallel spinors. Commun. Math. Phys. 320, 173–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Angenent, S., van der Vorst, R.: A superquadratic indefinite elliptic system and its Morse–Conley–Floer homology. Math. Z. 231, 203–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Angenent, S., van der Vorst, R.: A priori bounds and renormalized Morse indices of solutions of an elliptic system. In: Ann. Inst. H. Poincaré, Anal. Non Linéaire, vol. 17, pp. 277–306 (2000)

  15. Audin, M., Damian, M.: Morse Theory and Floer Homology. Universitext, Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  16. Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Booss-Bavnbek, B., Marcolli, M.: Bai-Ling Wang: weak UCP and perturbed monopole equations. Int. J. Math. 13, 987–1008 (2002)

    Article  MATH  Google Scholar 

  18. Chen, Q., Jost, J., Wang, G.: Liouville theorems for Dirac-harmonic maps. J. Math. Phys. 48, 113517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254, 409–432 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Conley, C., Zehnder, E.: Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37, 207–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Daniele, G.: On the spectral flow for paths of essentially hyperbolic bounded operators on Banach spaces. arXiv preprint. arXiv:0806.4094 (2008)

  22. Ding, Y.: Variational methods for strongly indefinite problems. In: Interdisciplinary Mathematical Sciences, vol. 7. World Scientific, Hackensack (2007)

  23. Duistermaat, J.J.: On the Morse index in the calculus of variations. Adv. Math. 21, 173–195 (1976)

    Article  MATH  Google Scholar 

  24. Esteban, M.J., Sèrè, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Floer, A.: The unregularized gradient flow of the symplectic action. Commun. Pure Appl. Math. 41, 775–813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Floer, A.: A relative Morse index for the symplectic action. Commun. Pure Appl. Math. 41, 393–407 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Floer, A.: An instanton-invariant for 3-manifolds. Commun. Math. Phys. 118, 215–240 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedrich, T.: Dirac operators in Riemannian geometry. In: Graduate Studies in Mathematics, vol. 25 (2000)

  30. Ginoux, N.: The Dirac spectrum. In: Lecture Notes in Math, vol. 1976. Springer, Berlin (2009)

  31. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  32. Isobe, T.: Existence results for solutions to nonlinear Dirac equations on compact spin manifolds. Manuscr. Math. 135, 329–360 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds. J. Funct. Anal. 260, 253–307 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Isobe, T.: On the existence of nonlinear Dirac-geodesics on compact manifolds. Calc. Var. 43, 83–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Isobe, T.: A perturbation method for spinorial Yamabe type equations on \(S^m\) and its application. Math. Ann. 355, 1255–1299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Isobe, T.: Spinorial Yamabe type equations on \(S^{3}\) via Conley index. Adv. Nonlinear Stud. 15, 39–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Isobe, T.: Morse–Floer Theory for Superquadratic Dirac Equations, II: Construction and Computation of Morse–Floer Homology. J. Fixed Point Theory Appl. (2016)

  38. Jost, J.: Geometry and Physics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  39. Jost, J., Mo, X., Zhu, M.: Some explicit constructions of Dirac-harmonic maps. J. Geom. Phys. 59, 1512–1527 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kryszewski, W., Szulkin, A.: An infinite dimensional Morse theory with applications. Trans. Am. Math. Soc. 349, 3181–3234 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  42. Lesch, M.: The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators. In: Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds. Contemp. Math. vol. 366, pp. 193–224 (2005)

  43. Maalaoui, A.: Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds. J. Fixed Point Theory Appl. 13, 175–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maalaoui, A., Martino, V.: The Rabinowitz–Floer homology for a class of semilinear problems and applications. J. Funct. Anal. 269, 4006–4037 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. In: Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

  46. Raulot, S.: A Sobolev-like inequality for the Dirac operator. J. Funct. Anal. 26, 1588–1617 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Robbin, J., Salamon, D.: The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27, 1–33 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Salamon, D.: Lectures on Floer Homology. Symplectic Geometry and Topology (Park City, UT, 1997), vol. 7, pp. 143–229. IAS/Park City Math, Ser. (1999)

  49. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  50. Szulkin, A.: Cohomology and Morse theory for strongly indefinite functionals. Math. Z. 209, 375–418 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  51. Taylor, M.E.: Partial Differential Equations, Part I-Part III. Springer, New York (2011)

  52. Thaller, B.: The Dirac Equations. Springer, Berlin (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 22540222, 15K04947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Isobe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isobe, T. Morse–Floer theory for superquadratic Dirac equations, I: relative Morse indices and compactness. J. Fixed Point Theory Appl. 19, 1315–1363 (2017). https://doi.org/10.1007/s11784-016-0391-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0391-z

Keywords

Mathematics Subject Classification

Navigation