Skip to main content
Log in

Some of Sion’s heirs and relatives

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde (1995) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Aubin, Optima and Equilibria. An Introduction to Nonlinear Analysis. 2nd ed., Grad. Texts in Math. 140, Springer-Verlag, Berlin, 1998.

  2. R. C. Bassanezi and G. H. Greco, A minimax theorem for marginally upper/ lower semicontinuous functions. Topol. Methods Nonlinear Anal. 5 (1995), 249–253.

  3. Ben-El-Mechaiekh H., Dimand R. W.: A Simpler proof of the von Neumann minimax theorem. Amer. Math. Monthly 118, 636–641 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Berge, Espaces Topologiques: Fonctions Multivoques. Dunod, Paris, 1962.

  5. C. Berge, Topological Spaces. Dover Publications, Mineola, NY, 1997.

  6. K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge, 1985.

  7. J. Dugundji and A. Granas, KKM maps and variational inequalities. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 679–682.

  8. J. Dugundji and A. Granas, Fixed Point Theory. I. Polish Sci. Publ., Warsaw, 1982.

  9. K. Fan, Applications of a theorem concerning sets with convex sections. Math. Ann. 163 (1966), 189–203.

  10. K. Fan, A further generalization of Shapley’s generalization of the Knaster- Kuratowski-Mazurkiewicz theorem. In: Game Theory and Mathematical Economics (D. Moeschlin and D. Pallaschke, eds.), North–Holland, 1981, 275–279.

  11. Fan K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. D. Flåm and G. H. Greco, Minimax and intersection theorems. In: Fixed Point Theory and Applications (Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow, 1991, 123–140.

  13. A. Granas and J. Dugundji, Fixed Point Theory. Springer Monogr. Math., Springer-Verlag, New York, 2003.

  14. A. Granas and M. Lassonde, Sur un principe géométrique en analyse convexe. Studia Math. 101 (1991), 1–18.

  15. Granas A., Lassonde M.: Some elementary general principles of convex analysis. Topol. Methods Nonlinear. Anal. 5, 23–37 (1995)

    MATH  MathSciNet  Google Scholar 

  16. A. Granas and F. C. Liu, Some minimax theorems without convexity. In: Nonlinear and Convex Analysis, Lect. Notes Pure Appl. Math. 107, Marcel Dekker, New York, 1987, 61–75.

  17. G. H. Greco, Théorèmes de minimax locaux et fonctions topologiquement fermées. In: Partial Differential Equations and the Calculus of Variations, Vol. II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston, MA, 1989, 589–631.

  18. Greco G.H.: Minimax theorems and saddling transformations. J. Math. Anal. Appl. 147, 180–197 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. G. H. Greco and C. Horvath, Passy-Prisman’s minimax theorem. Ann. Sci. Math. Québec 22 (1998), 181–191.

  20. G. H. Greco and C. Horvath, Topological versions of Passy-Prisman minimax theorem. Optimization 47 (2000), 155–166.

  21. G. H. Greco and C. Horvath, Toward a geometric theory of minimax equalities. Optimization 47 (2000), 167–188.

  22. G. H. Greco and C. Horvath, A Topological Minimax Theorem. J. Optim. Theory Appl. 113 (2002), 513–536.

  23. J. Kindler, Intersection theorems, minimax theorems and abstract connectedness. In: Minimax Theory and Applications (Erice, 1996), Nonconvex Optim. Appl. 26, Kluwer Academic Publishers, Dordrecht, 1998, 105–120.

  24. J. Kindler and R. Trost, Minimax theorems for interval spaces. Acta Math. Hungar. 54 (1989), 39–49.

  25. V. L. Klee, Jr., On certain intersection properties of convex sets. Canad. J. Math. 3 (1951), 272–275.

  26. H. König, A general minimax theorem based on connectedness. Arch. Math. (Basel) 59 (1992), 55–64.

  27. H. König, Addendum to: “A general minimax theorem based on connectedness”. Arch. Math. (Basel) 64 (1995), 139–143.

  28. U. Passy and E. Z. Prisman, A duality approach to minimax results for quasisaddle functions in finite dimensions. Math. Program. 55 (1992), 81–98.

  29. Sion M.: On general minimax theorems. Pacific J. Math. 8, 171–176 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  30. L. L. Stachó, Minimax theorems beyond topological vector spaces. Acta Sci. Math. (Szeged) 42 (1980), 157–164.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Horvath.

Additional information

To Professor Andrzej Granas, a mentor and friend, with deep gratitude and admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvath, C. Some of Sion’s heirs and relatives. J. Fixed Point Theory Appl. 16, 385–409 (2014). https://doi.org/10.1007/s11784-015-0225-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0225-4

Mathematics Subject Classification

Keywords

Navigation