Skip to main content
Log in

Estimates for the topological degree and related topics

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This is a survey paper on estimates for the topological degree and related topics which range from the characterizations of Sobolev spaces and BV functions to the Jacobian determinant and nonlocal filter problems in Image Processing. These results are obtained jointly with Bourgain and Brezis. Several open questions are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R. A.: Sobolev Spaces Pure and Applied Mathematics 65. Academic Press, New York (1975)

    Google Scholar 

  2. Alberti G., Baldo S., Orlandi G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5, 275–311 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Ambrosio, Metric space valued functions of bounded variation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 493–478.

  4. Ball J.M.: conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  5. Ball J.M., Murat F.: and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bethuel F.A: of maps in H 1(B 3, \({\mathbb{S}^{2}}\)) which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7, 269–286 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Bethuel F.: approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Progr. Nonlinear Differential Equations Appl. 13, Birkhäuser Boston, Boston, MA, 1994.

  9. F. Bethuel and D. Chiron, Some questions related to the lifting problem in Sobolev spaces. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, 125–152.

  10. Bethuel F., Demengel F.: Extensions for Sobolev mappings between manifolds. Calc. Var. Partial Differential Equations 3, 475–491 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bethuel F., Zheng X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bojarski B., Ihnatsyeva L., Kinnunen J.: to recognize polynomials in higher order Sobolev spaces. Math. Scand. 112, 161–181 (2013)

    MATH  MathSciNet  Google Scholar 

  13. Bourgain J., Brezis H.: On the equation div Yf and application to control of phases. J. Amer. Math. Soc. 16, 393–426 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Bourgain, H. Brezis and P. Mironescu, Complements to the paper: “Lifting, Degree, and Distributional Jacobian Revisited”. Unpublished manuscript.

  15. J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations (J. L. Menaldi, E. Rofman, and A. Sulem, eds.), a volume in honour of A. Bensoussan’s 60th birthday, IOS Press, Amsterdam, 2001, 439–455.

  16. Bourgain J., Brezis H., Mironescu P.: H 1/2 maps with values into the circle: Minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes études Sci. 99, 1–115 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. BourgainJ. Brezis H., Mironescu P.: Lifting, degree, and distributional Jacobian revisited. Comm. Pure Appl. Math. 58, 529–551 (2005)

    Article  MathSciNet  Google Scholar 

  18. Bourgain J., Brezis H., Nguyen H.-M.: A new estimate for the topological degree. C. R. Math. Acad. Sci. Paris 340, 787–791 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bourgain J., Kahane J.-P.: Sur les séries de Fourier des fonctions continues unimodulaires. Ann. Inst. Fourier (Grenoble) 60, 1201–1214 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bourgain J., Kozma G.: One cannot hear the winding number. J. Eur. Math. Soc. (JEMS) 9, 637–658 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bourgain J., Nguyen H.-M.: A new characterization of Sobolev spaces. C. R. Math. Acad. Sci. Paris 343, 75–80 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bousquet P.: Topological singularities in W s, p(S N, S 1). J. Anal. Math. 102, 311–346 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Brezis, Analyse Fonctionnelle. Théorie et Applications. Mathématiques appliquées pour la maîtrise, Dunod, Paris, 2002.

  24. H. Brezis, How to recognize constant functions. A connections with Sobolev spaces. Uspekhi Mat. Nauk 57 (2002), 59–74; English transl.: Russian Math. Surveys 57 (2002), 693–708.

  25. H. Brezis, New questions related to the topological degree. In: The Unity of Mathematics, Progr. Math. 244, Birkhäuser Boston, Boston, MA, 2006, 137– 154.

  26. H. Brezis, private communication.

  27. Brezis H., Coron J.-M., Lieb E. H.: Harmonic maps with defects. Comm. Math. Phys. 107, 649–705 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Brezis H., Fusco N., Sbordone C.: Integrability for the Jacobian of orientation preserving mappings. J. Funct. Anal 115, 425–431 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Brezis H., Li Y., Mironescu P., Nirenberg L.: Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13, 181–190 (1999)

    MATH  MathSciNet  Google Scholar 

  30. H. Brezis, P. Mironescu and A. Ponce, W 1, 1-maps with values into S 1. In: Geometric Analysis of PDE and Several Complex Variables, Contemp. Math. 368, Amer. Math. Soc., Providence, RI, 2005, 69–100.

  31. Brezis H., Nguyen H.-M.: On a new class of functions related to VMO. C. R. Math. Acad. Sci. Paris 349, 157–160 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Brezis and H.-M. Nguyen, On the distributional Jacobian of maps from \({\mathbb{S}^{N}}\) into \({\mathbb{S}^{N}}\) in fractional Sobolev and Hölder spaces. Ann. of Math. (2) 173 (2011), 1141–1183.

  33. Brezis H., Nguyen H.-M.: The Jacobian determinant revisited. Invent. Math. 185, 17–54 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. H. Brezis and H.-M. Nguyen, Non-local functionals related to the total variation and applications in Image Processing. Preprint, 2014.

  35. Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197–263 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chiron D.: On the definition of Sobolev and BV spaces into into singular spaces and the trace problem, Commun. Contemp. Math. 9, 473–513 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993) 247–286

  39. Dacorogna B., Murat F.: On the optimality of certain Sobolev exponents for the weak continuity of determinants. J. Funct. Anal. 105, 42–62 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Dávila J.: On an open question about functions of bounded variation. Calc. Var. Partial Differential Equations 15, 519–527 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. M. Esteban and S. Müller, Sobolev maps with integer degree and applications to Skyrme’s problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 436 (1992), 197–201.

  42. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.

  43. I. Fonseca, N. Fusco and P. Marcellini, Topological degree, Jacobian determinants and relaxation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), 187–250.

  44. FonsecaI. Leoni G., Malý J.: continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal. 178, 411–448 (2005)

    Article  MathSciNet  Google Scholar 

  45. GiaquintaM. Modica G., Souček J.: Remarks on the degree theory. J. Funct. Anal. 125, 172–200 (1994)

    Article  MathSciNet  Google Scholar 

  46. P. Hajłasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), 1–101.

  47. Hang F., Lin F.: A remark on the Jacobians. Commun. Contemp. Math. 2, 35–46 (2000)

    MATH  MathSciNet  Google Scholar 

  48. Hang F., Lin F.: Topology of Sobolev mappings. II. Acta Math 191, 55–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. R. Ignat, On an open problem about how to recognize constant functions. Houston J. Math. 31 (2005), 285–304.

  50. R. Ignat, The space BV(S 2, S 1): Minimal connection and optimal lifting. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283–302.

  51. T. Iwaniec, Null Lagrangians, the art of integration by parts. In: The Interaction of Analysis and Geometry, Contemp.Math. 424, Amer.Math. Soc., Providence, RI, 2007, 83–102.

  52. Iwaniec T., Sbordone C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129–143 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  53. Jerrard R., Soner H.: Functions of bounded higher variation. Indiana Univ. Math. J. 51, 645–677 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  54. F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415–426.

  55. N. Korevaar and R. Schoen, Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1 (1993), 561–659.

  56. G. Leoni and D. Spector, Characterization of Sobolev and BV spaces. J. Funct. Anal. 261 (2011), 2926–2958; Corrigendum: J. Funct. Anal. 266 (2014), 1106– 1114.

  57. Lin F., Yang Y.: Existence of two-dimensional skyrmions via the concentration- compactness method. Comm. Pure Appl. Math. 57, 1332–1351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. V. G. Maz’ya, Sobolev Spaces. Springer-Verlag, Berlin, 1985.

  59. Millot V.: Energy with weight for S 2-valued maps with prescribed singularities. Calc. Var. Partial Differential Equations 24, 83–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  60. P. Mironescu, Sobolev maps on manifolds: Degree, approximation, lifting. In: Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, 413–436.

  61. P. Mironescu,Lifting default for \({\mathbb{S}^{1}}\)-valued maps. C. R. Math. Acad. Sci. Paris 346 (2008), 1039–1044.

  62. Mironescu P.: Decomposition of \({mathbb{S}^{1}}\)-valued maps in Sobolev spaces. C. R. Math. Acad. Sci. Paris 348, 743–746 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. P. Mironescu, Le déterminant jacobien d’après Brezis et Nguyen. Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042, Astérisque, No. 348 (2012), 405–424.

  64. C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations. Grundlehren Math. Wiss. 130, Springer-Verlag, New York, 1966.

  65. S. Müller, Higher integrability of determinants and weak convergence in L 1. J. Reine Angew. Math.412 (1990), 20–34.

  66. S. Müller, Det = det. A remark on the distributional determinant. C. R. Math. Acad. Sci. Paris 311 (1990), 13–17.

  67. Müller S.: On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 657–696 (1993)

    MATH  Google Scholar 

  68. Nguyen H.-M.: Some new characterizations of Sobolev spaces. J. Funct. Anal. 237, 689–720 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  69. H.-M. Nguyen, Г-convergence and Sobolev norms. C. R. Math. Acad. Sci. Paris 345 (2007), 679–684.

  70. H.-M. Nguyen, Optimal constant in a new estimate for the degree. J. Anal. Math. 101 (2007), 367–395.

  71. H.-M. Nguyen, Further characterizations of Sobolev spaces. J. Eur. Math. Soc. (JEMS) 10 (2008), 191–229.

  72. H.-M. Nguyen, Inequalities related to liftings and applications. C. R. Math. Acad. Sci. Paris 346 (2008), 957–962.

  73. Nguyen H.-M.: Sobolev norms, and BV functions. Duke Math. J. 157, 95–533 (2011)

    Article  Google Scholar 

  74. Nguyen H.-M.: Some inequalities related to Sobolev norms. Calc. Var. Partial Differential Equations 41, 483–509 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ponce A.: A new approach to Sobolev spaces and connections to Г-convergence. Calc. Var. Partial Differential Equations 19, 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  76. Ponce A.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6, 1–15 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  77. A. Ponce and J. Van Schaftingen, Closure of smooth maps in W 1, p(B 3; S 2). Differential Integral Equations 22 (2009), 881–900.

  78. Yu. G. Reshetnyak, Sobolev-type classes of functions with values in a metric space. Sib. Math. J. 38 (1997), 567–583.

  79. Yu. G. Reshetnyak, The weak convergence of completely additive vector-valued set functions. Sibirsk. Mat. Zh.9 (1968), 1386–1394.

  80. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion. Transl. Math. Monogr. 73, Amer. Math. Soc., Providence, RI, 1989.

  81. V. M. Gol’dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces. Mathematics and Its Applications (Soviet Series) 54, Kluwer Academic Publishers Group, Dordrecht, 1990.

  82. Rivière T.: Dense subsets of H 1/2(S 2, S 1). Ann. Global Anal. Geom. 18, 517–528 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  83. Rudin L. I., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  Google Scholar 

  84. KindermannS. Osher S., Jones P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091–1115 (2005)

    Article  MathSciNet  Google Scholar 

  85. W. Sickel and A. Youssfi, The characterization of the regularity of the Jacobian determinant in the framework of Bessel potential spaces on domains. J. Lond. Math. Soc. (2) 60 (1999), 561–580.

  86. W. Sickel and A. Youssfi, The characterization of the regularity of the Jacobian determinant in the framework of potential spaces. J. Lond. Math. Soc. (2) 59 (1999), 287–310.

  87. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton, NJ, 1993.

  88. L. P. Yaroslavsky, Digital Picture Processing. An introduction. Springer Series in Information Sciences 9, Springer-Verlag, Berlin, 1985.

  89. L. P. Yaroslavsky and M. Eden, Fundamentals of Digital Optics. Birkhäuser Boston, Boston, MA, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai-Minh Nguyen.

Additional information

To Haïm Brezis on his 70th birthday with esteem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HM. Estimates for the topological degree and related topics. J. Fixed Point Theory Appl. 15, 185–215 (2014). https://doi.org/10.1007/s11784-014-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0182-3

Mathematics Subject Classification

Keywords

Navigation