Skip to main content
Log in

Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Peroxyacetyl nitrate (PAN) is an important indicator of photochemical smog and has adverse effects on human health and vegetation growth. A rapid and highly selective technique of thermal dissociation–chemical ionization mass spectrometry (TD-CIMS) was recently developed to measure the abundance of PAN in real time; however, it may be subject to artifact in the presence of nitric oxide (NO). In this study, we tested the interference of the PAN signal induced by NO, evaluated the performance of TD-CIMS in an urban environment, and investigated the concentration and formation of PAN in urban Hong Kong. NO caused a significant underestimation of the PAN signal in TD-CIMS, with the underestimation increasing sharply with NO concentration and decreasing slightly with PAN abundance. A formula was derived to link the loss of PAN signal with the concentrations of NO and PAN, which can be used for data correction in PAN measurements. The corrected PAN data from TDCIMS were consistent with those from the commonly used gas chromatography with electron capture detection, which confirms the utility of TD-CIMS in an urban environment in which NO is abundant. In autumn of 2010, the hourly average PAN mixing ratio varied from 0.06 ppbv to 5.17 ppbv, indicating the occurrence of photochemical pollution in urban Hong Kong. The formation efficiency of PAN during pollution episodes was as high as 3.9 to 5.9 ppbv per 100 ppbv ozone. The efficiency showed a near-linear increase with NO x concentration, suggesting a control policy of NOx reduction for PAN pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephens E R. The formation, reactions, and properties of peroxyacyl nitrates (PANs) in photochemical air pollution. Advances in Environmental Science and Technology, 1969, 1: 119–146

    CAS  Google Scholar 

  2. Vyskocil A, Viau C, Lamy S. Peroxyacetyl nitrate: review of toxicity. Human & Experimental Toxicology, 1998, 17(4): 212–220

    Article  CAS  Google Scholar 

  3. Parrish D D, Xu J, Croes B, Shao M. Air quality improvement in Los Angeles—Perspectives for developing cities. Frontiers of Environmental Science & Engineering, 2016, 10(5): 11

    Article  Google Scholar 

  4. Taylor O C. Importance of peroxyacetyl nitrate (PAN) as a phytotoxic air pollutant. Journal of the Air Pollution Control Association, 1969, 19(5): 347–351

    Article  CAS  Google Scholar 

  5. Temple P J, Taylor O C. World-wide ambient measurements of peroxyacetyl nitrate (PAN) and implications for plant injury. Atmospheric Environment, 1983, 17(8): 1583–1587

    Article  CAS  Google Scholar 

  6. Ridley B A, Shetter J D, Gandrud BW, Salas L J, Singh H B, Carroll M A, Hübler G, Albritton D L, Hastie D R, Schiff H I, Mackay G I, Karechi D R, Davis D D, Bradshaw J D, Rodgers M O, Sandholm S T, Torres A L, Condon E P, Gregory G L, Beck S M. Ratios of peroxyacetyl nitrate to active nitrogen observed during aircraft flights over the eastern pacific oceans and continental United States. Journal of Geophysical Research, 1990, 95(D7): 10179–10192

    Article  Google Scholar 

  7. Singh H B, Salas L J, Ridley B A, Shetter J D, Donahue N M, Fehsenfeld F C, Fahey D W, Parrish D D, Williams E J, Liu S C, Hubler G, Murphy P C. Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere. Nature, 1985, 318(6044): 347–349

    Article  CAS  Google Scholar 

  8. Orlando J J, Tyndall G S, Calvert J G. Thermal decomposition pathways for peroxyacetyl nitrate (PAN): implications for atmospheric methyl nitrate levels. Atmospheric Environment. Part A, General Topics, 1992, 26(17): 3111–3118

    Article  Google Scholar 

  9. Singh H B, Salas L J, Viezee W. Global distribution of peroxyacetyl nitrate. Nature, 1986, 321(6070): 588–591

    Article  CAS  Google Scholar 

  10. Gaffney J S, Marley N A, Cunningham M M, Doskey P V. Measurements of peroxyacyl nitrates (PANS) in Mexico City: implications for megacity air quality impacts on regional scales. Atmospheric Environment, 1999, 33(30): 5003–5012

    Article  CAS  Google Scholar 

  11. Zhang J B, Xu Z, Yang G, Wang B. Peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in urban and suburban atmospheres of Beijing, China. Atmospheric Chemistry and Physics Discussion, 2011, 11(3): 8173–8206

    Article  Google Scholar 

  12. Williams J, Roberts J M, Bertman S B, Stroud C A, Fehsenfeld F C, Baumann K, Buhr M P, Knapp K, Murphy P C, Nowick M, Williams E J. A method for the airborne measurement of PAN, PPN, and MPAN. Journal of Geophysical Research, 2000, 105(D23): 28943–28960

    Article  CAS  Google Scholar 

  13. Flocke F, Weinheimer A, Swanson A, Roberts J, Schmitt R, Shertz S. On the measurement of PANs by gas chromatography and electron capture detection. Journal of Atmospheric Chemistry, 2005, 52(1): 19–43

    Article  CAS  Google Scholar 

  14. Zhang G, Mu Y, Liu J, Mellouki A. Direct and simultaneous determination of trace-level carbon tetrachloride, peroxyacetyl nitrate, and peroxypropionyl nitrate using gas chromatographyelectron capture detection. Journal of Chromatography. A, 2012, 1266(2012): 110–115

    CAS  Google Scholar 

  15. Zheng W, Flocke F M, Tyndall G S, Swanson A, Orlando J J, Roberts J M, Huey L G, Tanner D J. Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere. Atmospheric Chemistry and Physics, 2011, 11(13): 6529–6547

    Article  CAS  Google Scholar 

  16. Hastie D R, Gray J, Langford V S, Maclagan R G A R, Milligan D B, McEwan M J. Real-time measurement of peroxyacetyl nitrate using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24(3): 343–348

    Article  CAS  Google Scholar 

  17. Huey L G. Measurement of trace atmospheric species by chemical ionization mass spectrometry: speciation of reactive nitrogen and future directions. Mass Spectrometry Reviews, 2007, 26(2): 166–184

    Article  CAS  Google Scholar 

  18. Slusher D L, Huey L G, Tanner D J, Flocke F M, Roberts J M. A thermal dissociation-chemical ionization mass spectrometry (TDCIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. Journal of Geophysical Research, 2004, 109(D19): D19315

    Article  Google Scholar 

  19. Wolfe G M, Thornton J A, McNeill V F, Jaffe D A, Reidmiller D, Chand D, Smith J, Swartzendruber P, Flocke F, Zheng W. Influence of trans-Pacific pollution transport on acyl peroxy nitrate abundances and speciation at Mount Bachelor Observatory during INTEX-B. Atmospheric Chemistry and Physics, 2007, 7(20): 5309–5325

    Article  CAS  Google Scholar 

  20. Turnipseed A A, Huey L G, Nemitz E, Stickel R, Higgs J, Tanner D J, Slusher D L, Sparks J P, Flocke F, Guenther A. Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest. Journal of Geophysical Research, D, Atmospheres, 2006, 111 (D9): D09304

    Article  Google Scholar 

  21. Wolfe G M, Thornton J A, Yatavelli R L N, McKay M, Goldstein A H, LaFranchi B, Min K E, Cohen R C. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN) above a Ponderosa pine forest. Atmospheric Chemistry and Physics, 2009, 9(2): 615–634

    Article  CAS  Google Scholar 

  22. LaFranchi B, Wolfe G, Thornton J, Harrold S, Browne E, Min K, Wooldridge P, Gilman J, Kuster W, Goldan P, de Gouw J A, McKay M, Goldstein A H, Ren X, Mao J, Cohen R C. Closing the peroxy acetyl nitrate budget: observations of acyl peroxy nitrates (PAN, PPN, and MPAN) during BEARPEX 2007. Atmospheric Chemistry and Physics, 2009, 9(19): 7623–7641

    Article  CAS  Google Scholar 

  23. Roiger A, Aufmhoff H, Stock P, Arnold F, Schlager H. An aircraftborne chemical ionization-ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements. Atmospheric Measurement Techniques, 2011, 4(2): 173–188

    Article  CAS  Google Scholar 

  24. Phillips G J, Pouvesle N, Thieser J, Schuster G, Axinte R, Fischer H, Williams J, Lelieveld J, Crowley J N. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes. Atmospheric Chemistry and Physics, 2013, 13(3): 1129–1139

    Article  Google Scholar 

  25. Wang Z, Shao M, Chen L, Tao M, Zhong L, Chen D, Fan M, Wang Y, Wang X. Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 9

    Article  Google Scholar 

  26. Xue L, Wang T, Wang X, Blake D R, Gao J, Nie W, Gao R, Gao X, Xu Z, Ding A, Huang Y, Lee S, Chen Y, Wang S, Chai F, Zhang Q, Wang W. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation. Environmental Pollution, 2014, 195(195): 39–47

    Article  CAS  Google Scholar 

  27. Wang X, Wang T, Yan C, Tham Y J, Xue L, Xu Z, Zha Q. Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon? Atmospheric Measurement Techniques, 2014, 7(1): 1–12

    Article  Google Scholar 

  28. Zhang J, Wang T, Ding A, Zhou X, Xue L, Poon C, Wu W, Gao J, Zuo H, Chen J, Zhang X C, Fan S J. Continuous measurement of peroxyacetyl nitrate (PAN) in suburban and remote areas of western China. Atmospheric Environment, 2009, 43(2): 228–237

    Article  CAS  Google Scholar 

  29. Xu Z, Wang T, Xue L, Louie P K K, Luk C W Y, Gao J, Wang S, Chai F, Wang W. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China. Atmospheric Environment, 2013, 76(2013): 221–226

    Article  CAS  Google Scholar 

  30. Lee G, Jang Y, Lee H, Han J S, Kim K R, Lee M. Characteristic behavior of peroxyacetyl nitrate (PAN) in Seoul megacity, Korea. Chemosphere, 2008, 73(4): 619–628

    Article  Google Scholar 

  31. Grosjean E, Grosjean D, Fraser M P, Cass G R. Air quality model evaluation data for organics. 3. Peroxyacetyl nitrate and peroxypropionyl nitrate in Los Angeles air. Environmental Science & Technology, 1996, 30(9): 2704–2714

    Article  CAS  Google Scholar 

  32. Xu Z, Xue L, Wang T, Xia T, Gao Y, Louie P K K, Luk C W Y. Measurements of peroxyacetyl nitrate at a background site in the Pearl River delta region: production efficiency and regional transport. Aerosol and Air Quality Research, 2015, 15(1): 833–841

    CAS  Google Scholar 

  33. Liu Z, Wang Y, Gu D, Zhao C, Huey L G, Stickel R, Liao J, Shao M, Zhu T, Zeng L, Liu S C, Chang C C, Amoroso A, Costabile F. Evidence of reactive aromatics as a major source of peroxy acetyl nitrate over China. Environmental Science & Technology, 2010, 44(18): 7017–7022

    Article  CAS  Google Scholar 

  34. Zhang J M. Measurement of atmospheric peroxyacetyl nitrate (PAN) and the implications to photochemical pollution. Dissertation for the Master Degree. Hong Kong: The Hong Kong Polytechnic University, 2009

    Google Scholar 

  35. Wang B, Shao M, Roberts J, Yang G, Yang F, Hu M, Zeng L, Zhang Y, Zhang J. Ground-based on-line measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in the Pearl River Delta, China. International Journal of Environmental Analytical Chemistry, 2010, 90(7): 548–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Environment and Conservation Fund of Hong Kong (Project No. 2009-07), National Natural Science Foundation of China (Grant Nos. 41275123, 21407094 and 91544213), China Postdoctoral Science Foundation (No. 2014M561932), and the Jiangsu Collaborative Innovation Center for Climate Change. The authors thank Dr. Pamela Holt for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likun Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, T., Xue, L. et al. Peroxyacetyl nitrate measurements by thermal dissociation–chemical ionization mass spectrometry in an urban environment: performance and characterizations. Front. Environ. Sci. Eng. 11, 3 (2017). https://doi.org/10.1007/s11783-017-0925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0925-7

Keywords

Navigation